A generic microsimulation for modelling and projecting family structure and intergenerational relationships

Sabine Zinn

January 2024, Vienna
9th World Congress of the International Microsimulation Association

DIW SOEP

Motivation

- Family context and genes matter for (almost) all societies worldwide
- Especially in social and economic contexts
- What if ... things would change \rightarrow Microsimulation approaches
- Software: There is SocSim ${ }^{1}$... but it is written in C and fixed to pre-determined demographic model structure
- Better: Have a generic open source, up-to-date, easy to enhance tool usable in a widely used software environment:

MicSim package in R and GitHub

Figure 3. Linked Lives and Cumulative Inequality in a Multigenerational Perspective.

Age

Gilligan, Karraker, \& Jasper (2018). Linked Lives and Cumulative Inequality: A Multigenerational Family Life Course Framework. Journal of Family Theory \& Review, 10(1), 111-125. doi:10.1111/jftr. 12244

[^0]
DIW SoEP

Continuous Time Microsimulation along Calender Time

Key idea: Individuals 'live’ their lives according to some (stochastic) model
Discrete states: summarize (demographically) relevant categories an individual can belong to (\rightarrow state space) Virtual population: all individuals that are considered during simulation

Calendar time

Life-Course Model: Continuous Time Markov Multi State Model

Stochastic process that at any point in time occupies one out of a set of discrete states
Key quantities: transition rates $\lambda_{s j, s k}(t)$ of Markovian process $Z(t)$
Allow deriving distribution function $F\left(w_{s j}, t\right)=1-S\left(w_{s j}, t\right)$ of waiting time to next event

DIW SoEP

Life-Course Model: Continuous Time Markov Multi State Model

Stochastic process that at any point in time occupies one out of a set of discrete states
Key quantities: transition rates $\lambda_{s j, s k}(t)$ of Markovian process $Z(t)$
Allow deriving distribution function $F\left(w_{s j}, t\right)=1-S\left(w_{s j}, t\right)$ of waiting time to next event
The probability that an individual is still in state s_{j} at time t after waiting time $w_{s j}$ depends on all K competing risks

$$
S\left(w_{s j}, t\right)=\prod_{k=1, k \neq j}^{K} \exp \left(-\Lambda\left(w_{s j, s k}, t\right)\right), \quad \Lambda\left(w_{s j, s k}, t\right)=\int_{t}^{w_{s j, s k}} \lambda_{s j, s k}(v) d v
$$

with $w_{s j, s k}$ is the waiting time in s_{j} after moving to s_{k}

Data Ingredients

Transition rates:

- For each micro unit: Generate sequence of random waiting times to next events \rightarrow synthetic life-courses
- Transition rates are estimated from survey data or vital statistics

Base population: Individuals to start with (e.g., census data)

Simulation Processing

At simulation starting time

- For all members of base population next event times are computed
- These are inserted into a list \& sorted according to time

Individual 35 current state transition time: 12.06.2007 next state	Individual 12 current state transition time: 04.12.2007 next state	Individual 102 current state transition time: 03.05.2008 next state	-••

DIW SOEP

Simulation Processing

At simulation starting time

- For all members of base population next event times are computed
- These are inserted into a list \& sorted according to time

Repeat until simulation stopping time is reached

- Dequeue first element from list
- Perform corresponding event
- Compute new event(s) for the respective unit(s) (possibly more events if more units are involved)
- Enqueue event(s) at the 'right' position
\Rightarrow Virtual population evolves along calendar time

Individual 35	Individual 12	Individual 102	
current state	current state	current state	
transition time: 12.06.2007	transition time: 04.12.2007	transition time: 03.05.2008	\ldots
next state	next state	next state	

Calendar time
\Rightarrow Allows adding and simulating linked lives

An Example: Female Centered Model

Transitions

- Move out from parental home [Parental home \rightarrow „All"]
- Move back home [,All" \rightarrow Parental home]
- Start partnership [Parental Home / Alone \rightarrow Partnership; only females]
- Stop partnership [Partnership \rightarrow Alone; only female]
- Fertility [CHILDLESS / CHILD \rightarrow CHild(ren); only female]
- Mortality rates [\rightarrow DEAD]

In addition: migration (optional)

Derived events

- Widowhood for females and males
- Onset and quitting partnership for males
- Fertility for males

Starting a Partnership (-> PA), only Females

DIW SoEP

Find a Partner

10

- Forming partnership market to choose from
- Following random procedure to assure that not only optimal matches are formed (reduce risk of unsuccessful searches)
- Letting choice rule depend on empirical patterns (e.g. partnership age profiles)
- Not allow incest
- Rule can be adapted by modeller (i.e. is generic)

DIW SoEP

Implemented in MicSim Package: micSimLink

```
# ------------------------------
# -------------------------------
startDate <- 20140101 # yyyymmdd
endDate <- 20641231 # yyyymmdd
simHorizon <- c(startDate=startDate, endDate=endDate)
#
# seed for random number generator
# -----------
# Definition of maximal age
# -
maxAge <- }10
#
# Definition of non-absorbing and absorbing states
# ----------------
livarr <- c("PH", "PA", "A")
fert <- c("0","1")
statespace <- expand.grid(sex=sex,livarr=1ivarr, fert=fert)
absstates <- "dead"
```

```
# Definition of (possible) transition rates
# ---------------------------------------------------------------------------------------------
# A. Moving out from parental home
moveout <- function(age, calTime){
    return(ifelse(age>16,pexp((age)/mean(age), rate=0.5),0))
}
# B. Moving back to parental home
movePH <- function(age, calTime){
    rate <- 1/age
    return(rate)
}
# C. Starting partnership with living togehter
startPA <- function(age, calTime){
    rate <- dnorm(age, mean=35, sd=12)
    rate[age<=18] <- 0
    return(rate)
}
# D. Separation of partnership with living together
stopPA <- function(age, calTime){
    rate <- dnorm(age, mean=50, sd=10)
    return(rate)
}
# E. Fertility rates (Hadwiger mixture mode1)
fertRates <- function(age, calTime){
    b <- 3.5; c <- 28
    rate <- (b/c)*(c/age)^(3/2)* exp(-b^2* (c/age+age/c-2))
    rate[age<=15 age>=45] <- 0
    return(rate)
}
# F. Mortality rates (Gompertz model)
mortRates <- function(age, calTime){
    a <- .00003; b <- 0.1
    rate <- a*exp(b*age)
    return(rate)
}
```

```
# Define transition pattern
# ------------------------------------------------------------------------------
partTrMatrix<- cbind(c("PH->A", "f/PH->f/PA", "f/A->f/PA", "f/PA->f/PH", "f/PA->f/A", "A->PH"),
                    c("moveout", "startPA", "startPA","stopPA","stopPA", "movePH"))
fertTrMatrix <- cbind(c("f/0->f/1", "f/1->f/1"),c("fertRates","fertRates"))
allTransitions <- rbind(partTrMatrix,fertTrMatrix)
absTransitions <- cbind(c("f/dead", "m/dead"),
                                    c(rep("mortRates",2)))
transitionMatrix <- buildTransitionMatrix(al1Transitions=al1Transitions,
                                    absTransitions=absTransitions,
                                    statespace=statespace)
#
# Define transitions triggering a birth event
fertTr <- fertTrMatrix[,1]
#
# Define transitions triggering the onset of a partnership
partTr <- C("PH->PA", "A->PA")
# Matching probability depends on age difference between potential partners
# with age difference defined as ageMale-ageFem
ageDiffDistr <- function(ageDiff) {
    return(dnorm(ageDiff, sd=3))
}
# --------------------------------------------
#
sepTr <- c("PA->A", "PA->PH")
# Related occurrence probability for partners
probsepTr <- c(0.9, 0.1)
# ------------------------------------------------------------------------------------------
# Define transitions in absorbing states (triggering also widowhood events)
absPartTr <- c("dead -> A")
```


Run it!

$\mathrm{N}=100.000$ individuals
Over 50 years
Single core (Std): 1h 58min

\# Execute microsimulation

* --------------------------------
transitionMatrix=transitionMatrix, absStates=absstates,
varInitstates=varInitstates, initstatesProb=initstatesProb,
maxAge=maxAge, simHorizon=simHorizon,
fertTr=fertTr, partTr=partTr, rule=1, ageDiffDistr = ageDiffDistr,
sepTr=sepTr, probsepTr = probSepTr,
absPartTr=absPartTr,
duration=FALSE)

Initialization
[1] "starting at: 2024-01-02 19:22:34"
[1] "Ending at: 2024-01-02 19:37:07"
Simulation is running ..
Year: 2014
Year: 2015
Year: 2016
Year: 2017
Year: 2018
...
Year: 2061
Year: 2062
Year: 2063
Year: 2064
Simulation has finished.
Number of unsuccessful partner search events: 0 of 24555 (0%)

DIW SoEP

Output: Virtual Population with Linked Individuals

ID birthDate initstate From To transitionTime transitionage motherID fatherID partnerID

119970920
119970920
119970920
119970920
119970920
$\mathrm{m} / \mathrm{PH} / 0 \mathrm{~m} / \mathrm{PH} / 0 \mathrm{~m} / \mathrm{A} / \mathrm{O}$ $\mathrm{m} / \mathrm{PH} / 0 \quad \mathrm{~m} / \mathrm{A} / 0 \mathrm{~m} / \mathrm{PH} / \mathrm{O}$ $\mathrm{m} / \mathrm{PH} / 0 \mathrm{~m} / \mathrm{PH} / 0 \mathrm{~m} / \mathrm{PA} / 0$ $\mathrm{m} / \mathrm{PH} / 0 \mathrm{~m} / \mathrm{PA} / 0$ dead $\mathrm{m} / \mathrm{PH} / 0 \mathrm{~m} / \mathrm{PH} / 0 \mathrm{~m} / \mathrm{A} / 0$

$$
\begin{array}{llr}
\mathrm{f} / \mathrm{PH} / 0 & \mathrm{f} / \mathrm{PH} / 0 & \mathrm{f} / \mathrm{A} / 0 \\
\mathrm{f} / \mathrm{PH} / 0 & \mathrm{f} / \mathrm{A} / 0 & \mathrm{f} / \mathrm{A} / 1 \\
\mathrm{f} / \mathrm{PH} / 0 & \mathrm{f} / \mathrm{A} / 1 & \mathrm{f} / \mathrm{PA} / 1 \\
\mathrm{f} / \mathrm{PH} / 0 & \mathrm{f} / \mathrm{PA} / 1 & \mathrm{f} / \mathrm{PA} / 1 \\
\mathrm{f} / \mathrm{PH} / 0 & \mathrm{f} / \mathrm{PA} / 1 & \mathrm{f} / \mathrm{PA} / 1
\end{array}
$$

20140826
20311116 20360824 20621215
20330205
16.93
34.16
38.93
65.24
35.38
16.23

20.59	96281	62592	NA
21.37	96281	62592	37891
28.75	96281	62592	37891
35.39	96281	62592	37891

DIW SoEP

Output: Age Difference Distribution of Mates

DIW SoEP

Next Steps

- Extend for more flexible mating rules (not only along age differences)
- Fully include into MicSim Package and upload to CRAN
- Conducting meaningful applications (e.g. upcoming VW project on inheritance of home ownership)

Caution

- Finding proper matches requires a well filled mating pool
- This requires a surplus of mate candidates (to ensure choice from potential mates with proper attributes)
- In female centered model: higher proportion of males in population necessary (stratification / *oversampling*)

Software and teaching material incl. application examples
R package MicSim (Version 2.0.0, last update 2023): Performing Continuous-Time Microsimulation.
http://cran.rproject.org/web/packages/MicSim/index.html
MicSim Package: Vignette
GitHub Repositories: https://github.com/bieneSchwarze
Especially:

- MicSim
- MicSimCourse
- MicSimLink

Kontakt:

szinn@diw

Life-Course Model: Continuous Time Markov Multi State Model

Stochastic process that at any point in time occupies one out of a set of discrete states
Key quantities: transition rates $\lambda_{s j, s k}(t)$ of Markovian process $Z(t)$ defined by $\left(J_{n}, T_{n}\right)_{n \in N_{o}}$

$$
\lambda_{s j, s k}(t)=\lim _{h \downarrow 0} P\left[J_{n+1}=s_{k}, T_{n+1} \in(t, t+h] \mid J_{n}=s_{j}, T_{n+1} \geq t\right]
$$

DIW SoEP

Life-Course Model: Continuous Time Markov Multi State Model

Stochastic process that at any point in time occupies one out of a set of discrete states

Key quantities: transition rates $\lambda_{s j, s k}(t)$ of Markovian process $Z(t)$ defined by $\left(J_{n}, T_{n}\right)_{n \in N_{o}}$

$$
\lambda_{s j, s k}(t)=\lim _{h \downarrow 0} P\left[J_{n+1}=s_{k}, T_{n+1} \in(t, t+h] \mid J_{n}=s_{j}, T_{n+1} \geq t\right]
$$

Allow deriving distribution function $F\left(w_{s j}, t\right)=1-S\left(w_{s j}, t\right)$ of waiting time to next event
The probability that an individual is still in state s_{j} at time t after waiting time $w_{s j}$ depends on all K competing risks

$$
S\left(w_{s j}, t\right)=\prod_{k=1, k \neq j}^{K} \exp \left(-\Lambda\left(w_{s j, s k}, t\right)\right), \quad \Lambda\left(w_{s j, s k}, t\right)=\int_{t}^{w_{s j, s k}} \lambda_{s j, s k}(v) d v
$$

with $w_{s j, s k}$ is the waiting time in s_{j} after moving to s_{k}

DIW SOEP

Handling of Time: Diskrete Events

DIW SOEP

Output: Number of Events

```
# Have a look at the outcome
# ----------------------
popLong <- convertToLongFormat (pop)
table(popLong$oD)
```

```
    0->1 1->1 A->PA A->PH cens dead PA->A PA->PH PH->A PH->PA
29831
```


[^0]: ${ }^{1}$ https://lab.demog.berkeley.edu/socsim/

