

A generic microsimulation for modelling and projecting family structure and intergenerational relationships

Sabine Zinn

January 2024, Vienna

9th World Congress of the International Microsimulation Association

Motivation

- Family context and genes matter for (almost) all societies worldwide
- Especially in social and economic contexts
- What if ... things would change \rightarrow Microsimulation approaches
- Software: There is SocSim¹ ... but it is written in C and fixed to pre-determined demographic model structure
- Better: Have a *generic open source, up-to-date, easy to enhance tool usable in a widely used software environment*: MicSim package in R and GitHub

FIGURE 3. LINKED LIVES AND CUMULATIVE INEQUALITY IN A MULTIGENERATIONAL PERSPECTIVE.

Gilligan, Karraker, & Jasper (2018). *Linked Lives and Cumulative Inequality: A Multigenerational Family Life Course Framework. Journal of Family Theory & Review, 10(1), 111–125.* doi:10.1111/jftr.12244

Continuous Time Microsimulation along Calender Time

Key idea: Individuals 'live' their lives according to some (stochastic) model

Discrete states: summarize (demographically) relevant categories an individual can belong to (\rightarrow state space) **Virtual population**: all individuals that are considered during simulation

Life-Course Model: Continuous Time Markov Multi State Model

Stochastic process that at any point in time occupies one out of a set of discrete states

Key quantities: transition rates $\lambda_{sj,sk}(t)$ of Markovian process Z(t)

Allow deriving *distribution function* $F(w_{sj}, t) = 1 - S(w_{sj}, t)$ of waiting time to next event

Life-Course Model: Continuous Time Markov Multi State Model

Stochastic process that at any point in time occupies one out of a set of discrete states

Key quantities: transition rates $\lambda_{sj,sk}(t)$ of Markovian process Z(t)

Allow deriving *distribution function* $F(w_{sj}, t) = 1 - S(w_{sj}, t)$ of waiting time to next event

The probability that an individual is still in state s_j at time t after waiting time w_{sj} depends on all K competing risks

$$S(w_{sj},t) = \prod_{k=1,k\neq j}^{K} \exp\left(-\Lambda(w_{sj,sk},t)\right), \quad \Lambda\left(w_{sj,sk},t\right) = \int_{t}^{w_{sj,sk}} \lambda_{sj,sk}(v) dv$$

with $w_{s_{i,sk}}$ is the waiting time in s_{i} after moving to s_{k}

Data Ingredients

Transition rates:

• For each micro unit: Generate sequence of random waiting times to next events -> synthetic life-courses

4

• Transition rates are estimated from survey data or vital statistics

Base population: Individuals to start with (e.g., census data)

Simulation Processing

At simulation starting time

- For all members of base population next event times are computed
- These are inserted into a list & sorted according to time

Individual 35	Individual 12	Individual 102	
current state	current state	current state	
transition time: 12.06.2007	transition time: 04.12.2007	transition time: 03.05.2008	
next state	next state	next state	

Calendar time

Simulation Processing

At simulation starting time

- For all members of base population next event times are computed
- These are inserted into a list & sorted according to time

Repeat until simulation stopping time is reached

- Dequeue first element from list
- Perform corresponding event
- Compute new event(s) for the respective unit(s) (possibly more events if more units are involved)
- Enqueue event(s) at the 'right' position

 \Rightarrow Virtual population evolves along calendar time

Individual 35	Individual 12	Individual 102	•••
current state	current state	current state	
transition time: 12.06.2007	transition time: 04.12.2007	transition time: 03.05.2008	
next state	next state	next state	

Calendar time

An Example: Female Centered Model

Transitions

- Move out from parental home [PARENTAL HOME \rightarrow "ALL"]
- Move back home [,,ALL"→ PARENTAL HOME]
- Start partnership [Parental Home / ALONE → PARTNERSHIP; ONLY FEMALES]
- Stop partnership [PARTNERSHIP → ALONE; ONLY FEMALE]
- Fertility [CHILDLESS / CHILD → CHILD(REN); ONLY FEMALE]
- Mortality rates [→ DEAD]

In addition: migration (optional)

Derived events

- Widowhood for females and males
- Onset and quitting partnership for males
- Fertility for males

Rate

Moving out from Parental Home (PH ->)

Find a Partner

- Forming *partnership market* to choose from
- Following *random procedure* to assure that not only optimal matches are formed (reduce risk of unsuccessful searches)
- Letting choice rule depend on *empirical patterns* (e.g. partnership age profiles)
- Not allow incest
- Rule can be adapted by modeller (i.e. *is generic*)

Implemented in MicSim Package: micSimLink

```
_____
 Defining simulation horizon
startDate <- 20140101 # yyyymmdd
endDate <- 20641231 # yyyymmdd
simHorizon <- c(startDate=startDate, endDate=endDate)</pre>
# Seed for random number generator
                     _____
set.seed(234)
# Definition of maximal age
                     _____
maxAge <- 100
# Definition of non-absorbing and absorbing states
sex <- c("m","f")</pre>
livArr <- c("PH", "PA", "A")
fert <- c("0","1")</pre>
stateSpace <- expand.grid(sex=sex,livArr=livArr, fert=fert)</pre>
absStates <- "dead"
```



```
# Definition of (possible) transition rates
# A. Moving out from parental home
moveOut <- function(age, calTime){</pre>
  return(ifelse(age>16,pexp((age)/mean(age), rate=0.5),0))
# B. Moving back to parental home
movePH <- function(age, calTime){</pre>
  rate <- 1/age
  return(rate)
# C. Starting partnership with living togehter
startPA <- function(age, calTime){</pre>
  rate <- dnorm(age, mean=35, sd=12)</pre>
  rate[age<=18] <- 0
  return(rate)
# D. Separation of partnership with living together
stopPA <- function(age, calTime){</pre>
  rate <- dnorm(age, mean=50, sd=10)</pre>
  return(rate)
# E. Fertility rates (Hadwiger mixture model)
fertRates <- function(age, calTime){</pre>
  b <- 3.5: c <- 28
  rate <- (b/c)*(c/age)^{(3/2)}*exp(-b^{2}*(c/age+age/c-2))
  rate[age<=15 | age>=45] <- 0</pre>
  return(rate)
# F. Mortality rates (Gompertz model)
mortRates <- function(age, calTime){</pre>
  a <- .00003; b <- 0.1
  rate <- a*exp(b*age)</pre>
  return(rate)
```


#		
# Define transition pattern #		
partTrMatrix <- cbind(c("PH->A", "f/PH->f/PA", "f/A->f/PA", "f/PA->f/PH", "f/PA-> c("moveOut", "startPA", "startPA","stopPA","stopPA", "moveF fertTrMatrix <- cbind(c("f/0->f/1", "f/1->f/1"),c("fertRates","fertRates")) allTransitions <- rbind(partTrMatrix,fertTrMatrix) absTransitions <- cbind(c("f/dead", "m/dead"), c(rep("mortRates",2)))	⊳f/А", йН"))	"A->PH")
transitionMatrix <- buildTransitionMatrix(allTransitions=allTransitions, absTransitions=absTransitions, stateSpace=stateSpace)		
#		
# fertTr <- fertTrMatrix[,1]		
# The second s # Define transitions triggering the onset of a partnership		
<pre># partTr <- c("PH->PA", "A->PA") # Matching probability depends on age difference between potential partners # with age difference defined as ageMale-ageFem ageDiffDistr <- function(ageDiff) { return(dnorm(ageDiff, sd=3)) }</pre>		
# transitions triggering a separation		
# sepTr <- c("PA->A", "PA->PH") # Related occurrence probability for partners probSepTr <- c(0.9, 0.1)		
# The second second states (triggering also widowhood events)		

(11

Run it!

N=100.000 individuals Over 50 years Single core (Std): 1h 58min

```
Initialization ...
[1] "Starting at: 2024-01-02 19:22:34"
[1] "Ending at: 2024-01-02 19:37:07"
Simulation is running ...
Year: 2014
      2015
Year :
Year :
      2016
Year :
      2017
Year: 2018
     ...
       2061
Year :
Year: 2062
Year: 2063
Year: 2064
Simulation has finished.
Number of unsuccessful partner search events: 0 of 24555 (0%)
```


Output: Virtual Population with Linked Individuals

ID	birthDate	initState	From	то	transitionTime	transitionAge	motherID	fatherID	partnerID
1	19970920	m/PH/0	m/PH/0	m/A/0	20140826	16.93	NA	NA	NA
1	19970920	m/PH/0	m/A/0	m/PH/O	20311116	34.16	NA	NA	NA
1	19970920	m/PH/0	m/PH/0	m/PA/O	20360824	38.93	NA	NA	26471
1	19970920	m/PH/0	m/PA/0	dead	20621215	65.24	NA	NA	26471
1	19970920	m/PH/0	m/PH/0	m/A/0	20330205	35.38	NA	NA	NA
100993 100993 100993 100993 100993 100993	20140923 20140923 20140923 20140923 20140923 20140923	f/рн/0 f/рн/0 f/рн/0 f/рн/0 f/рн/0 f/рн/0	f/A/0 f/A/1 f/PA/1	f/A/1 f/PA/1 f/PA/1	20301215 20350424 20360206 20430622 20500214	16.23 20.59 21.37 28.75 35.39	96281 96281 96281 96281 96281 96281	62592 62592 62592 62592 62592 62592	NA NA 37891 37891 37891 37891

Output: Age Difference Distribution of Mates

age male - age female

(14

Next Steps

- Extend for more flexible mating rules (not only along age differences)
- Fully include into MicSim Package and upload to CRAN
- Conducting meaningful applications (e.g. upcoming VW project on inheritance of home ownership)

Caution

• Finding proper matches requires a well filled mating pool

- This requires a surplus of mate candidates (to ensure choice from potential mates with proper attributes)
- In female centered model: higher proportion of males in population necessary (stratification / *oversampling*)

Software and teaching material incl. application examples

R package MicSim (Version 2.0.0, last update 2023): Performing Continuous-Time Microsimulation. http://cran.rproject.org/web/packages/MicSim/index.html

MicSim Package: Vignette

GitHub Repositories: <u>https://github.com/bieneSchwarze</u>

Especially:

- MicSim
- MicSimCourse
- MicSimLink

Kontakt: szinn@diw

Life-Course Model: Continuous Time Markov Multi State Model

Stochastic process that at any point in time occupies one out of a set of discrete states

Key quantities: transition rates $\lambda_{sj,sk}(t)$ of Markovian process Z(t) defined by $(J_n, T_n)_{n \in N_o}$

$$\lambda_{sj,sk}(t) = \lim_{h \downarrow 0} P[J_{n+1} = s_k, T_{n+1} \in (t, t+h] \mid J_n = s_j, T_{n+1} \ge t]$$

Life-Course Model: Continuous Time Markov Multi State Model

Stochastic process that at any point in time occupies one out of a set of discrete states

Key quantities: transition rates $\lambda_{sj,sk}(t)$ of Markovian process Z(t) defined by $(J_n, T_n)_{n \in N_0}$

$$\lambda_{sj,sk}(t) = \lim_{h \downarrow 0} P[J_{n+1} = s_k, T_{n+1} \in (t, t+h] \mid J_n = s_j, T_{n+1} \ge t]$$

Allow deriving *distribution function* $F(w_{sj}, t) = 1 - S(w_{sj}, t)$ of waiting time to next event

The probability that an individual is still in state s_j at time t after waiting time w_{sj} depends on all K competing risks

$$S(w_{sj},t) = \prod_{k=1,k\neq j}^{K} \exp(-\Lambda(w_{sj,sk},t)), \quad \Lambda(w_{sj,sk},t) = \int_{t}^{W_{sj,sk}} \lambda_{sj,sk}(v) dv$$

with $w_{sj,sk}$ is the waiting time in s_j after moving to s_k

۵.

Handling of Time: Diskrete Events

Output: Number of Events

#
Have a look at the outcome
#
Convert to Long format
popLong <- convertToLongFormat(pop) table(popLong\$OD)

0->1 1->1 A->PA A->PH cens dead PA->A PA->PH PH->A PH->PA 29831 34943 25933 71753 103009 61766 15451 22448 175786 23177