Population Projections by Microsimulation at Statistics Austria

Pauline Pohl, Philip Slepecki Statistics Austria

Martin Spielauer Austrian Institute of Economic Research (WIFO)

9th World Congress of the International Microsimulation Association Vienna, 8th January 2024

www.statistik.at

Independent statistics for evidence-based decision making

Background: Microsimulation in Official Statistics

- Microsimulation is not new (Orcutt, 1957)
- Neither is its use for population projections (Van Imhoff and Post, 1998)
- Several NSOs use microsimulation models (e.g. Demosim (Statistics Canada, 2022), MOSART (Andreassen et al., 2020), DESTINIE (Blanchet et al., 2011), MikroSim (Münnich et al., 2021))
- Still, official population projections are rarely computed using microsimulation
- Cohort component method (CCM) remains standard model

Motivation

The **cohort-component method** is the standard tool for the production of **population projections** in official statistics

- computationally simple
- does not require a broad range of input data
- well established in the literature

However, it cannot:

- capture complex and dynamic demographic processes
- account for (additional) population heterogeneity
- produce results for a variety of individual-level characteristics (only aggregates)

\rightarrow Microsimulation presents a solution to these issues

Moving towards microsimulation

Replicating CCM results using microsimulation

- The cohort-component method uses **event rates** to determine the projected paths of fertility, mortality and migration (e.g. mortality rates by age, sex, domestic/foreign-born)
- In the microsimulation, these rates are converted into **waiting times** using the inversion method (inverse transform sampling)
- Simulate births, deaths and migration events using these waiting times

Statistics Austria's microsimulation model: Status Quo

- Dynamic competing risk microsimulation with continuous time
- Characteristics: age, sex, province, country of birth, duration of residence
- Regional breakdown: Austria and federal provinces (NUTS-2)
- Data: Administrative (micro) data for the Austrian resident population
- Programming language: Modgen¹

→ More on this in the session on Population Projections (Tuesday 9:00-10:30, Ceremonial Hall)

¹ https://www.statcan.gc.ca/en/microsimulation/modgen/modgen

Outlook

✓ Microsimulation of core demographic events to produce the population projection

- Gradually develop and extend individual model elements, in order to:
 - enhance the population projection
 - produce projections for other demographic and socio-economic characteristics
- Focus on applications in demography, education, health, labour market
- Develop a microsimulation infrastructure for Statistics Austria

Outlook

- Enhance the population projection:
 - Account for heterogeneity among migrants in fertility and mortality, in addition to emigration
 - Model demographic processes dependent on individual-level education
- Project educational attainment/enrollment and labour force participation
- Project health characteristics and incidence of disease, e.g. cancer incidence and mortality

Challenges along the way

- Moving from CCM to microsimulation represents a fundamental methodological change, requiring:
 - a deeper understanding of model building
 - advanced statistical programming and data analysis skills
 - more resources and computation capacities
- Model extensions require additional data and assumptions for future developments
- Managing different objectives while developing a model for a range of applications and organisational units within Statistics Austria

Concluding remarks

- Unlike the standard cohort-component method, microsimulation can produce results for a variety of individual-level characteristics and account for additional population heterogeneities
- Flexibility to implement new modules and integrate different demographic and socioeconomic processes in a comprehensive modelling infrastructure

References

Andreassen, L., Fredriksen, D., Gjefsen, H.M., Halvorsen, E. and Stølen, N.M. (2020) The dynamic cross-sectional microsimulation model MOSART, *International Journal of Microsimulation*, 13(1): 92-113.

Blanchet, D., Buffeteau, S., Crenner, E. and Le Minez, S. (2011) Le modèle de microsimulation Destinie 2 : principales caractéristiques et premiers résultats, *Economie et Statistique*, 441-442: 101-121.

Münnich, R., Schnell, R., Brenzel, H., Dieckmann, H., Dräger, S., Emmenegger, J., Höcker, P., Kopp, J., Merkle, H., Neufang, K., Obersneider, M., Reinhold, J., Schaller, J., Schmaus, S. and Stein, P. (2021) A Population Based Regional Dynamic Microsimulation of Germany: The MikroSim Model, *methods, data, analyses*, 15(2): 241-264.

Orcutt, G.H. (1957) A New Type of Socio-economic System, *Review of Economics and Statistics*, 39: 116-123.

Statistics Canada (2022) *Projections of the Indigenous populations and households in Canada, 2016 to 2041: Overview of data sources, methods, assumptions and scenarios* [Online]. Available at: https://www150.statcan.gc.ca/n1/pub/17-20-0001/172000012021001-eng.htm

Van Imhoff, E. and Post, W. (1998) Microsimulation Methods for Population Projection, *Population: An English Selection*, 10(1): 97-138.

For further information please contact:

Pauline Pohl +43 1 71128 8007 pauline.pohl@statistik.gv.at

Philip Slepecki +43 1 71128 7623 philip.slepecki@statistik.gv.at

Martin Spielauer +43 1 798 26 01 246 martin.spielauer@wifo.ac.at

