Evaluation of welfare effect of tax reform through compensating variation consistent with fairness

Laurence Jacquet¹, Zhiyang Jia², Thor O. Thoresen^{2,3}

¹CY Cergy Paris Université and THEMA ²Statistics Norway ³University of Oslo

9th Microsimulation Congress 2024

Background

- The standard Mirrleesian approach to optimal tax challenged when there is heterogeneity in preferences for leisure
 - Should taxpayers be compensated for characteristics that they control preferences?
- The fair allocation approach of Fleurbaey and Maniquet (2011) focuses on unfair and fair inequalities
 - Distinction between individual circumstances or constraints (requiring compensation) and individual responsibilities (not subject to compensation).
 - Demonstrate social ordering that satisfy fairness properties

Contribution of the paper

- Not so many empirical illustrations of tax policy implications of the fairness approach
 - Provide empirical evidence consistent with the "fairness" perspective
- Description of distribution of welfare effects of tax reform
 - Use labor supply model to simulate welfare effects of tax reform when individual heterogeneity in preferences are neutralized
- Fairness literature calls for a revival of measuring welfare by money metric utility
 - Welfare effects of tax reform by by compensating variation (*CV*)
- Distributional effects of the bracket tax of the Norwegian tax reform 2013–2019 used for illustration

Empirical strategy in brief

- Use a labor supply model to simulate labor supply choices before and after a tax change
 - ▶ Bracket tax of the Norwegian tax reform (2013–2019)
- Measure welfare effects of the reform by *CV*
- Two versions of a labor supply model used to simulate welfare effects of the reform
 - Conventional vs preference-adjusted (no individual heterogeneity in preferences) models
- Identify difference in evaluation of reform between CV and CV^{circ}
 - *CV^{circ}* is welfare effects when preference heterogeneity has been eliminated – only circumstances remain

Bracket tax

View of results

Figure: Distribution of welfare effects (-*CV*) of introduction of bracket tax on disposable income: conventional vs preference-adjusted methods

JTV (CY Cergy Paris Université and THEMA StEvaluation of welfare effect of tax reform through 9th Microsimulation Congress 2024 6/14

Employing a particular discrete choice labor supply model

- A discrete choice random utility model based on "job choice" (Dagsvik, Jia, Kornstad, and Thoresen, 2014; Dagsvik and Jia, 2016)
 - Discrete choice of working hours, such as $\langle 0-5, 5-10, 10-15, ..., 50-55 \rangle$
- Individuals choose a job *z* within a discrete alternative
 - Individual preferences U(C,h,z) = u(C,h) + ε(z) where u is the deterministic part and ε(z) is a random variable
 - Job opportunities M(h), h > 0,
 - Economic budget constraint $C = wh + y T(wh, y) \equiv f(wh, y)$

The job choice model, cont'd

The probability φ(h) of choosing a job with hours of work equal to h becomes

$$\varphi(h) = P\left(V(h, y) = \max_{x \in D} V(x, y)\right) = \frac{M(h) \exp(u(f(wh, y), h))}{\sum_{x \in D} M(x) \exp(u(f(wx, y), x))}$$

Neutralization of preferences in practice

• Variation in taste-modifying variables eliminated by adjusting the deterministic part of the utility function

$$\log u(C,h) = \beta_1 \frac{(C-C_0)^{\alpha_1} - 1}{\alpha_1} + \beta_2 \frac{(\bar{h}-h)^{\alpha_2} - 1}{\alpha_2},$$

where β_2 represents taste-modifying variables

- Taste-modifying variables no longer individual everybody gets the median
- Error term also common

Estimates of *CV* by the simulation approach of McFadden (1999)

The conventional *CV* for household *i*:

$$\max_{h\in D} \left(u_i(f_0(w_ih, y_i), h) + \log(M_i(h)) + \eta_i(h) \right)$$

 $= \max_{h \in D} \left(u_i(f_1(w_ih, y_i) + CV_i, h) + \log(M_i(h)) + \eta_i(h) \right),$

Obtaining CV_i^{circ} for the preference-adjusted alternative:

$$\max_{h\in D} \left(u_{ref}(f_0(w_ih, y_i), h) + \log(M_i(h)) + \eta_{ref}(h) \right)$$

 $= \max_{h \in D} \left(u_{ref}(f_1(w_ih, y_i) + CV_i^{circ}, h) + \log(M_i(h)) + \eta_{ref}(h) \right)$

Comparison of *CV*: conventional method vs preference-adjusted method

Table: Summary statistics for simulation results, welfare effects (-*CV*) of introduction of the bracket tax

Simulation	Welfare effect (NOK)	Standard deviation (NOK)
Conventional	18,407	5,417
Preference-adjusted	18,573	5,189

Difference between the conventional and the preference-adjusted methods

Figure: Distribution of welfare effects (-*CV*) of introduction of bracket tax on disposable income, conventional and preference-adjusted methods

Mechanisms behind preference-neutrality leading to larger welfare effects at the high end

- Preference neutralization leads to a more compressed working hours distribution
 - This moves people into income levels where the economic gain of the reform is large
 - Movements correlate positively with household income

Summary

- Suggest an empirical approach corresponding to theoretical contributions by Fleurbaey and Maniquet (2011)
 - Responding to distinction between circumstances (requiring compensation) and individual responsibilities (not subject to compensation).
- Describe "fair" distributional welfare effects of a reform
 - Individual differences in preferences for leisure eliminated
- Compare distribution of welfare effects of reform under conventional and preference-adjusted methods
 - Policy-makers should address the latter(?)