Introduction	Literature Review	Data	Methodology	Assessment	References
0000000	000	00	000000	0000	

Marginal Personal Income Tax Changes: Tax Revenues, Redistribution and Labour Supply Responses

Rory Green & David Sonnewald

 $9^{\rm th}$ World Congress of the International Microsimulation Association

$10^{\rm th}$ January, 2024

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction	Literature Review	Data	Methodology	Assessment	
0000000	000	00	000000	0000	
Table of Conte	nts				

1 Introduction

2 Literature Review

3 Data

4 Methodology

・ロット (四)・ (田)・ (日)・

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction	Literature Review	Data	Methodology	Assessment	
●000000	000	00	000000	0000	

1 Introduction

2 Literature Review

3 Data

4 Methodology

5 Assessment

・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ク へ や

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction $0 \bullet 00000$	Literature Review 000	Data 00	Methodology 000000	Assessment	
Motivation					

- State's fiscal policy: a trade-off among
 - state budget (tax revenues, government spending);
 - income redistribution (equity, poverty);
 - efficiency (competitiveness, labour supply).
- An **exhaustive analysis of a reform** in the tax-benefit system requires a set of tools to explore its effects on each of these aspects simultaneously.
- In this study:
 - Belgian arithmetic microsimulation model (Beamm) for the tax-benefit system → effects on inequality and state budget;
 - Random Utility Random Opportunity (RURO) model \rightarrow effects on labour supply.

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

うして 正正 スポットボット 大臣 くらく

Introduction 000000	Literature Review 000	Data 00	Methodology 000000	Assessment	
Fiscal system i	n Belgium ¹				

- **%** Income tax rate: **50%** (Ranked in the world: **7**; Global average: **30.3%**).
- Tax burden: 42% (Ranked in the world: 3; Global average: 20.8%).
- \rightarrow Tax wedge: 53% (Ranked in the world: 1; OECD average: 34.6%).

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

¹Latest available data from 2022/2023.

Introduction 0000000	Literature Review 000	Data 00	Methodology 000000	Assessment	
Institutional C	ontext				

- Major **tax reform in 2016**: removal of the 30% tax bracket and broadening of the tax thresholds for low income earners.
- Belgium continues to have the **highest tax wedge** in the world.

TI (€) from	TI (€) to	Rate (%)	Max tax on bracket (\in)	Cumulative tax $(\mathbf{\in})$
0	15,200	25	3,800	3,800
15,200	26,830	40	4,652	8,452
26,830	$46,\!440$	45	8,824.5	17,276.5
46,440	∞	50		

Table 1: Personal income tax rates in Belgium (2023)

Source. PWC Belgium. Notes. Tax brackets for income year 2023 are applicable to net taxable income after the deduction of social security charges and professional expenses.

9th World Congress of the International Microsimulation Association

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回日 のQ@

Introduction 0000000	Literature Review 000	Data 00	Methodology 000000	Assessment	
Research Ques	tion				

What are the effects of **marginal tax changes** (tax rates and income brackets) in the Personal Income Tax (PIT) on tax revenues, redistribution and labour supply?

- **1** Assessment of the pre-reform scenario:
 - Run of the tax-benefit microsimulation model to determine tax revenues, inequality, and individuals' disposable income.
 - Use of the individuals' disposable income to estimate the labour supply.
- **2** Definition of **five reform scenarios** (based on Creedy et al. $(2018) \rightarrow \text{optimal directional changes}$).
- **3** For every scenario, replication of Point 1.
- **4** Comparison of results from Points 1 and 3.

th World Congress of the International Microsimulation Association

$\begin{array}{c} \text{Introduction} \\ \text{0000000} \end{array}$	Literature Review 000	Data 00	Methodology 000000	Assessment	
Marginal PIT	Reforms				

- **Reform 1**: 1% increase of all marginal tax rates.
- **Reform 2**: 1% decrease of all marginal tax rates.
- **Reform 3**: \in 1000 increase of all income brackets.
- **Reform 4**: \in 1000 decrease of all income brackets.
- **Reform 5**: A combination of marginal tax rates and income brackets increase/decrease.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ のQ@

Introduction 000000	Literature Review 000	Data 00	Methodology 000000	$\mathbf{Assessment}$ 0000	
Optimal direct	ion of taxation				

- No optimal taxation → the government objective function does not need to be explicitly defined.
- But optimal direction of tax changes \rightarrow We assume the government's utility to be $\mathcal{U} = f(T B, Ineq, l^s)$:
 - \uparrow with the differences between collected taxes and provided benefits (T B);
 - \downarrow with inequality (*Ineq*);
 - \uparrow with labour supply (l^s) .
- **Optimal direction**: a reform's outcome that **improves** one or more input of the government's utility function **without exacerbating** the others.

A D D A

Introduction 0000000	Literature Review	Data 00	Methodology 000000	Assessment 0000	References

1 Introduction

2 Literature Review

3 Data

4 Methodology

5 Assessment

・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ク へ や

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction 0000000	Literature Review 0●0	Data 00	Methodology 000000	Assessment	
Three strands	of research				

- Taxation as a redistributive tool: Piketty et al. (2011), Saez and Diamond (2012), Stephenson (2018), Saez and Zucman (2020), Dianov et al. (2022).
- Δ Labour supply in response to tax reforms using structural models: Decoster et al. (2010), Müllbacher and Nagl (2017), Bosch et al. (2017), Creedy et al. (2018), de Mahieu (2021).
- **RURO models**: Aaberge et al. (1995), Aaberge et al. (1999), Dagsvik and Strøm (1995), Dagsvik and Strøm (2006), Capéau et al. (2016), Aaberge and Colombino (2018), Capéau et al. (2018), de Mahieu (2021).

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回日 のQ@

Introduction 0000000	Literature Review 00●	Data 00	Methodology 000000	Assessment	
Contribution					

- Bridging the gap between the literature on the effects of taxation on redistribution and inequality and the one on the impact of taxation on labour supply.
- Use of a novel tool (**Beamm**) for policy analysis and simulation.
 - Unique model with complete information on Belgian population, which replicates the fiscal system to a very detailed extent.
 - Existing research only based on Euromod.

◆□▶ ◆□▶ ◆目▶ ◆日▶ ◆□▶ ◆○▼

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction	Literature Review	Data	Methodology	Assessment	References
0000000	000	●0	000000	0000	

1 Introduction

2 Literature Review

3 Data

4 Methodology

5 Assessment

・ロット (四)・ (田)・ (日)・

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction 0000000	Literature Review 000	Data 0●	Methodology 000000	Assessment	
Data set					

- Novel synthetic database fully representative of the Belgian population \rightarrow no existing representative Belgian data cover this information.
- Sources: Administrative data from Personal Income tax declarations, Survey on Income and Living Conditions (EU-SILC), Household Finance and Consumption Survey (HFCS), Household Budget Survey (HBS), Labour Force Survey (LFS), Beldam, Monitor, and Time Use Survey (HETUS).
- Methods: Statistical Matching + Generative Adversarial Networks (GAN).

9th World Congress of the International Microsimulation Association

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Introduction	Literature Review	Data	Methodology	Assessment	References
0000000	000	00	•••••	0000	

1 Introduction

2 Literature Review

3 Data

4 Methodology Beamm

RURU

くしゃ 本語 ・ 山や ・ 山や ・ 白ゃ

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction 0000000	Literature Review 000	Data 00	Methodology 0●0000	Assessment	
Steps					

- **1** Run of **Beamm** to obtain tax revenues, inequality indicators, and individuals disposable income at the current state of the art.
- **2 RURO**'s estimation and calculation of the **labour supply**.
- **3 Reforms**' simulation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□■ ���?

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction 0000000	Literature Review 000	Data oo	$\begin{array}{c} \text{Methodology} \\ \circ \circ \bullet \circ \circ \circ \end{array}$	Assessment 0000	References

1 Introduction

2 Literature Review

3 Data

◆□▶ ◆□▶ ◆目▶ ◆日▶ ◆□▶ ◆○▼

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction
cooococoLiterature Review
cooData
cooMethodology
cooAssessment
cooReferencesThe Belgian arithmetic microsimulation model

- Static microsimulation model of the tax-benefit system in Belgium.
- The rules of the tax-benefit system are translated into R code such that each tax and benefit² is calculated **for every individual and household (micro-data)**.
- **Outputs**: household disposable income, state budget, tax burden, tax wedge, and inequality, poverty and redistribution indexes.
- Current rules of the fiscal system \rightarrow state of the art; Δ parameters \rightarrow reform.

 $^{^{2}}$ Child benefits, income support, investment income tax, maternity leave, real property tax, personal income tax, vat and excise duties, and wealth tax.

Introduction 0000000	Literature Review 000	Data 00	$\begin{array}{c} \text{Methodology} \\ \circ \circ \circ \circ \bullet \circ \end{array}$	Assessment 0000	

1 Introduction

2 Literature Review

3 Data

4 Methodology Beamm RURO

・ロット語・ (明マート)・ (日)・ (日)・

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

- **Structural** labor supply models.
- Agents face a choice among a set of options:
 - Agents = workers \rightarrow *utility*;
 - Options = bundles of hours to work and the respective wage at which they are remunerated (*i.e.*, the labour supply) \rightarrow opportunities.
- A random component is imposed on each side (utility and opportunities) of the **behavioural causal process** that leads to the agent's choice.
- Individuals' labour supply is calculated using the **estimated parameters** of the model.

9th World Congress of the International Microsimulation Association

うして ふゆ てんけん ふせん ふむ くしく

Introduction 0000000	Literature Review 000	Data 00	Methodology 000000	$\begin{array}{c} \text{Assessment} \\ \bullet 000 \end{array}$	References

1 Introduction

2 Literature Review

3 Data

4 Methodology

・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ク へ や

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction 0000000	Literature Review 000	Data oo	Methodology 000000	Assessment 0000	
Reforms' evalua	ation				

- What are the **effects** on:
 - State budget;
 - Income distribution;
 - Labour supply.
- Aim: deriving the optimal direction of taxation based on these effects.

4日 > 4日 > 4日 > 4日 > 4日 > 4日 > 900

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction	Literature Review	Data	Methodology	Assessment	
0000000	000	00	000000	0000	
Next steps					

- **Results** are yet to come.
- Currently working on:
 - **RURO's code** (integration with Beamm + adjustments);
 - Fine-tuning **Beamm's dataset**.

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Introduction	Literature Review 000	Data 00	Methodology 000000	Assessment 000	References

Thanks for your attention!

For comments or questions, reach me out at:

- \checkmark david.sonnewald@uclouvain.be
- ${\boldsymbol{\mathscr{S}}}\ https://davidsonnewald.netlify.app/$
- https://www.linkedin.com/in/david-j-sonnewald-0411a2169/
- **血** https://cape-saintlouis.be/

・ロト・西・・西・・西・ 西・ ろくの

Rory Green & David Sonnewald

th World Congress of the International Microsimulation Association

References Aaberge, R., & Colombino, U. (2018). Structural labour supply models and microsimulation. International Journal of Microsimulation, 11(1), 162–197. Aaberge, R., Colombino, U., & Strøm, S. (1999). Labor supply in Italy: An empirical analysis of joint household decisions, with taxes and quantity constraints. Journal of Applied Econometrics, 14(4), 403–422. Aaberge, R., Dagsvik, J. K., & Strøm, S. (1995). Labour supply responses and welfare effects of tax reforms. Scandinavian Journal of Economics, 97(4), 633–659. Anderson, T. W. (1995). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. J Am Stat Assoc, 52, 200– 203.Apostel, A., & O'Neill, D. (2022). A one-off wealth tax for Belgium: Revenue potential, distributional impact, and environmental effects. *Ecological Economics*, 1.96Atkinson, A. B., Piketty, T., & Saez, E. (2011). Top incomes in the long run of history. Journal of Economic Literature, 49(1), 3–71.

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Marginal Personal Income Tax Changes: Tax Revenues, Redistribution and Labour Supply Responses

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Bach, S., Corneo, G., & Steiner, V. (2012).From bottom to top: The entire income distribution in Germany, 19922003. The Review of Income and Wealth, 58(2), 211–232.
 Bosch, N., Gielen, M., Jongen, E., & Mastrogiacomo, M. (2017).Heterogeneity in

- Bosch, N., Gielen, M., Jongen, E., & Mastrogiacomo, M. (2017). Heterogeneity in labour supply responses: Evidence from a major tax reform. Oxf Bull Econ Stat, 79(1), 769–796.
- Bozio, A., Garbinti, B., Goupille-Lebret, J., Guillot, M., & Piketty, T. (2020).Predistribution vs. Redistribution: Evidence from France and the U.S.. World Inequality Lab Working Paper, (22).
- Broyden, C. (1970). The convergence of a class of double-rank minimization algorithms 2. The new algorithm. *IMA Journal of Applied Mathematics*, 6, 222– 231.
- Capéau, B., Decoster, A., & Dekkers, G. (2016). Estimating and simulating with a random utility random opportunity model of job choice presentation and application to Belgium. *International Journal of Microsimulation*, 9(2), 144– 191.

9th World Congress of the International Microsimulation Association

ntroduction 000000	Literature Review 000	Data oo	$\operatorname{Methodology}$ 000000	Assessment 0000	References
Capéau, l	B., Decoster, A., Ma	es, S., & Var	nheukelom, T. (20	18).Piecemeal mo	odelling
of	the effects of joint	direct and ir	ndirect tax reform	ns. Faculty of Eco	nomics
aı	nd Businsess, KU Le	euven, Discu	ssion Paper Serie	es, 18(10).	
Capgemin	ni. (2022).The World	l Wealth Rep	port. World Report	rt Series Wealth N	Ianage-
m	eent.				
Chancel,	L., Piketty, T., Sae	z, E., & Zuc	man, G. $(2022).V$	Vorld Inequality I	Report.
И	Vorld Inequality Lab.				
Cheng, J.	., Yang, Y., Tang, X	K., Xiong, N.	., Zhang, Y., & I	Lei, F. (2020).Ger	nerative
Α	dversarial Networks	: A Literatur	re Review. <i>KSII</i>	Transactions on 1	nternet
\mathcal{E}	Information System	ns, 14(12).			
Cingano,	F. (2014) . Trends in	income inequ	uality and its imp	act on economic g	growth .
0	ECD Social, Employ	yment and M	ligration Working	9 Papers, 163.	
Creedy, J	I., Gemmell, N., Héra	ault, N., & N	Iok, P. (2018).Mi	crosimulation ana	lysis of
ot	ptimal income tax re	forms. An ap	pplication to New	zealand. Working	g Paper
08	8/2018.				
				< □ > < 酉 > < ≧ > <	। ≣। ≣।≡ •) ९

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

References Dagsvik, J. K., & Strøm, S. (1995). Labor supply with non convex budget sets, hours restriction and non pecuniary job attributes. Technical report. Manuscript, Statistics Norway. Dagsvik, J. K., & Strøm, S. (2006). Sectoral labour supply, choice restrictions and functional form. Journal of Applied Econometrics, 21(6), 803–826. Decoster, A., De Swerdt, K., & Orsini, K. (2010). A Belgian flat income tax. effects on labour supply and income distribution. Review of Business and Economic Literature, $\theta(1)$, 23–54. de Mahieu, A. (2021).In-work benefits in Belgium: Effects on labour supply and welfare. International Journal of Microsimulation, 14(1), 43–72. Dianov, S., Koroleva, L., Pokrovskaia, N., Victorova, N., & Zavtsev, A. (2022). The Influence of Taxation on Income Inequality: Analysis of the Practice in the EU Countries. Sustainability, 14(9066). D'Orazio, M., Di Zio, M., & Scanu, M. (2002). Statistical Matching: Theory and *Practice*. John Wiley & Sons.

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Marginal Personal Income Tax Changes: Tax Revenues, Redistribution and Labour Supply Responses

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

roduction 20000	Literature Review 000	Data 00	Methodology 000000	$\underset{0000}{\text{Assessment}}$	References
Fletcher,	R. (1970).A new ap	proach to va	ariable metric alg	gorithms. <i>The Co</i>	mputer
J	ournal, 19, 317–322.				
$GDP \ per$	r capita (current uss	<i>\$)</i> . (2021). T	he World Bank.	Retrieved Februa	ary 24 ,
2	023, from https://d	ata.worldba	nk.org/indicator	/NY.GDP.PCA	P.CD?
e	$nd=2021\&most_rece$	ent_value_d	esc=true&start=	2021	
Goldfarb	, D. (1970).A famil	y of variable	e metric updates	s derived by vari	ational
n	neans. Mathematics of	of Computati	on, 24, 23-26.		
Goodfelle	ow, I., Pouget-Abadi	e, J., Mirza,	M., Xu, B., War	de-Farley, D., Oz	zair, S.,
C	Courville, A., & Beng	gio, Y. (2014). Generative ad	lversarial nets (Ve	ol. 27).
C	Curran Associates, In	с.			
Income a	inequality (indicator)	. (2023). OI	ECD. Retrieved I	February $24, 2023$	3, from
h	ttps://data.oecd.org	/inequality/i	ncome-inequality	.htm	
Keane, N	M. (2010). The Tax-7	Fransfer Sys	tem and Labour	Supply. MPRA	Paper,
U	University Library of	Munich, (55)	167).		

◇ □ ▷ ▲ □ ▷ ▲ □ ▷ ▲ □ ▷

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

roduction 20000	Literature Review 000	Data oo	Methodology 000000	Assessment 0000	Reference
List o	f countries by personal i	income tax re	ate. (2022). Tradi	ng Economics. Re	trieved
	February 24, 2023, fr	$\operatorname{com} https:/$	' / tradingeconom	ics.com / country	7 - list /
	personal-income-tax-r	ate			
McFa	dden, D. (1973).Conditi	ional logit ai	nalysis of qualita	tive choice behav	ior. <i>in:</i>
	P. Zarembka (ed.), Fr	rontiers in E	conometrics, Aca	idemic Press: Neu	v York,
	105 - 142.				
Meghi	ir, C., & Phillips, D. (20	008).Labour s	supply and taxes.	IZA Discussion	Papers,
	(3405).				
Mirrle	ees, J. A. (1971).An exp	ploration in	the theory of op	timum income ta	xation.
	The Review of Econor	nic Studies,	38(2), 175-208.		
Müllb	acher, S., & Nagl, W. (20)	017).Labour	supply in Austria	: An assessment of	${ m f recent}$
	developments and the	effects of a r	tax reform. <i>Empt</i>	<i>irica</i> , 44(3), 465–4	:86.
O'Doi	noghue, C. (2014). Hand	lbook of Mica	rosimulation Mod	lelling. Emerald In	nsight .
Pikett	xy, T. (2014). Capital in	the twenty-j	first century. Har	vard University P	ress.
Pikett	y, T., & Saez, E. (2013)	A theory of	optimal inherita	nce taxation. Eco	nomet-
	rica, 81(5), 1851-1886			< 回 > < 固 > < 固 > <	토▶ 토 =

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

References Piketty, T., Saez, M., & Stantcheva, S. (2011). Taxing the 1%: Why the top tax rate could be over 80%. VOXEU CEPR. Rässler, S. (2002). Statistical Matching: A Frequentist Theory, Practical Applications, and Alternative Bayesian Approaches (Springer Science & Business Media, Vol. 168). Lecture Notes in Statistics. Saez, E., & Diamond, P. A. (2012). The case for a progressive tax: From basic research to policy recommendations. Journal of Economic Perspectives, 26(4), 43-56. Saez, E., & Zucman, G. (2016). Wealth inequality in the United States since 1913: Evidence from capitalized income tax data. The Quarterly Journal of Economics, 131(2), 519-578. Saez, E., & Zucman, G. (2020). The triumph of injustice. WW Norton. Shanno, D. (1970). Conditioning of Quasi-Newton methods for function minimization. Mathematics of Computation, 24, 647–656. Stephenson, A. V. (2018). The Impact of Personal Income Tax Structure on Income Inequality for Belgium, Bulgaria, Germany, Lithuania, and Poland. Atlantic *Economic Journal*, 46(4), 405-417.

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Marginal Personal Income Tax Changes: Tax Revenues, Redistribution and Labour Supply Responses

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

roduction
occosionLiterature Review
occosionData
occosionMethodology
occosionAssessment
occosionReferencesStiglitz, J. E. (2012). The price of inequality: How today's divided society endangers
our future. WW Norton & Company.Image: Company.References

- Train, K. (2002). Discrete choice methods with simulation. Cambridge University Press.
- Truyts, T., Sheremeta, V., & Sonnewald, D. (2023).Beamm.brussels: An online, open-access tax-benefit microsimulation model for the Brussels Capital Region. *Brussels Studies*.
- Van Soest, A. (1995).Structural models of family labor supply: A discrete choice approach. The Journal of Human Resources, 30(1), 66–88.
- Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., & Wang, F. Y. (2017).Generative adversarial networks: Introduction and outlook. *IEEE/CAA Journal of Au*tomatica Sinica, 4(4), 588–598.
- Wealth. (2023). OECD. Retrieved February 24, 2023, from https://stats.oecd.org/ Index.aspx?DataSetCode=WEALTH

9th World Congress of the International Microsimulation Association

6 Appendix

Data generation RURO parameters' estimation

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

6 Appendix Data generation RURO parameters' estir

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= のへ⊙

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Statistical Matching BACK

- Administrative data are complemented with the information from the other data sources.
- Information is connected in a way that the final data set is accurate at the level of the entire distribution, *i.e.*, at the **level of the entire population**.

Figure A.1: Schematic representation statistical matching

Source. D'Orazio et al. (2002). Notes. Neural networks are trained on the available information $(Y^A \text{ and } Z^B)$ to the common variables X to fill in the gaps (marked in red).

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ のQ@

Generative Adversarial Networks BACK

- Despite statistical matching, observations can still contain chunks of **real information**.
- For confidentiality reasons, generation of a purely fictitious data set that has the **same joint distributions**³ as the original synthetic one.
- Generative AI algorithms based on neural networks competition.

³These are obtained by minimizing the Wasserstein distance, which is one of the most commonly used distances for calculating the distance between two distributions.

Example (1)

Employment status	$GAN \ dataset$	$SILC \ dataset$
Employed FT	35.6%	30.3%
Employed PT	10.6%	11.1%
Self-employed FT	4.6%	4.9%
Self-employed PT	0.2%	0.5%
Unemployed	3.0%	3.6%
Student	6.9%	8.7%
Retired	28.9%	27.1%
Disable	3.7%	4.4%
Housewife/man	5.5%	4.5%
Other Inactive	1.0%	2.4%
NA	0.1%	2.5%

Table A.1: Source. GAN and SILC data, own calculations.

ショック 単則 スポットポット 4日・

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Figure A.2: Median gross income, by income decile

Rory Green & David Sonnewald 9th V

9th World Congress of the International Microsimulation Association

6 Appendix

Data generation RURO parameters' estimation

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Model's building blocks: Utility (1)

$$U_{ij}(d_j, l_j, \epsilon_{ij}) = V_i(d_j, l_j) + \epsilon_{ij}$$
(1)

Where:

- i refers to the agent, and j to the job.
- $V_i(d_j, l_j)$ is the **deterministic part** ~ Box-Cox $\rightarrow V(d, l) = \alpha_d(\frac{d^{\alpha_1}-1}{\alpha_1}) + \alpha_l(\frac{l^{\alpha_2}-1}{\alpha_2})$:
 - d_j is the disposable income (comes from Beamm);
 - l_j are the weekly hours of leisure;
 - $\dot{\alpha}_l = \alpha_{l0} + \alpha'_l X$, where X is the vector of covariates;
- ϵ_{ij} is the random part ~ Gumbel $(0, 1) \rightarrow f(\epsilon) = e^{-\epsilon} e^{-e^{-\epsilon}}$.

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ のQ@

Model's building blocks: Utility (2)

The agent *i* **prefers** job *j* over job *k* if $U_{ij}(d_j, l_j, \epsilon_{ij}) > U_{ik}(d_k, l_k, \epsilon_{ik}), \forall j \neq k$.

$$P_{ij} = Prob(V_{ij} + \epsilon_{ij} > V_{ik} + \epsilon_{ik})$$

$$= Prob(V_{ik} + \epsilon_{ik} < V_{ij} + \epsilon_{ij})$$

$$= \int_{\epsilon} I(\epsilon_{ik} - \epsilon_{ij} < V_{ij} - V_{ik})f(\epsilon_i) d\epsilon_i \qquad (2)$$

$$= \frac{e^{V_{ij}}}{\sum_k e^{V_{ik}}}$$

Where $I(\cdot)$ is the **indicator function**: 1 if (\cdot) is true, 0 otherwise.⁴

9th World Congress of the International Microsimulation Association

⁴ This is a multidimensional integral over the density of the unobserved portion of utility $f(\epsilon_i)$ (see Train (2002) for the full proof).

Model's building blocks: Opportunities (1)

We assume that **hourly wages** are:

- **independent** of hours worked;
- ~ log-normal distributed as $g_1(w)$.

$$g_1(w) = \frac{1}{w\sigma\sqrt{2\pi}} exp\left(-\frac{1}{2}\left(\frac{\ln(w) - \gamma' Y}{\sigma}\right)^2\right)$$
(3)

Where σ and the vector γ are the parameters of the distribution, and Y is a vector of covariates.

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Average weekly working hours of job opportunities \sim uniform-with-peaks distribution (peaks in correspondence to part-/full-time regimes).

$$g_{2}(h) = \begin{cases} exp(\alpha_{h0}^{g}) & :h \in H \setminus \{ [18.5, 20.5], [29.5, 30.5], [37.5, 40.5] \} \\ exp(\alpha_{h0}^{g} + \alpha_{h1}) & :h \in [29.5, 30.5] \\ exp(\alpha_{h0}^{g} + \alpha_{h2}) & :h \in [18.5, 20.5] \\ exp(\alpha_{h0}^{g} + \alpha_{h3}) & :h \in [37.5, 40.5] \end{cases}$$
(4)

 $g_0 = exp(\alpha_o + \alpha'_o Z), \text{ for "out of market" job opportunities}$ (5) Where *H* are the possible values (0 to 70), and *Z* is a set of covariates.

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Marginal Personal Income Tax Changes: Tax Revenues, Redistribution and Labour Supply Responses

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回日 のQ@

Estimation of the model (1)

Given $\Psi_i(h, w) = exp(V_i(d_i(T - h, w), T - h)) = exp(V_i(d_i(l, w), l))$, and D_i a set of offers, the **estimated likelihood** that agent *i* chooses a job offer *j* is:

$$P_i(w,h|D_i) = \frac{\Psi_i(h,w)g_{0j}g_{1j}(w)g_{2j}(h)/\mathbb{S}(w,h)}{\sum_{r,t\in D_i}\Psi_i(r,t)g_{0j}g_{1j}(r)g_{2j}(t)/\mathbb{S}(r,t)}$$
(6)

For "out-of-market" job opportunities:

$$P_i(0,0|D_i) = \frac{\Psi_i(0,0)/\mathbb{S}(0,0)}{\Psi_i(0,0)/\mathbb{S}(0,0) + \sum_{r,t\in D_i}\Psi_i(r,t)g_{0j}g_{1j}(r)g_{2j}(t)/\mathbb{S}(r,t)}$$
(7)

Where $\mathbb S$ is a **prior density function** conditional on the observed choice being included. 5

Rory Green & David Sonnewald

9th World Congress of the International Microsimulation Association

⁵We use uniform distributions for the hours (from 0 to 70) and hourly wages (from 0 to 60). The prior probability to draw an out-of-market offer is set at 0.10.

Estimation of the model (2)

$$L = \prod_{i=1}^{N} P_i(w, h|D_i) \tag{8}$$

- L: likelihood that individuals receive the drawn opportunities.
- **Parameters that maximize the log-likelihood** by using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm.
- Estimated parameters: vectors α_l (Equation 1), γ (Equation 3), α_h (Equation 4), and α_o (Equation 5).

BACK

Rorv Green & David Sonnewald

9th World Congress of the International Microsimulation Association

Marginal Personal Income Tax Changes: Tax Revenues, Redistribution and Labour Supply Responses