Income Tax Reforms as a Driver for Female Labor Supply?

Judith Herrmann ¹², Lena Calahorrano ¹, Mara Rebaudo ¹²

¹ Fraunhofer Institute of Applied Information Technology FIT ² University of Freiburg

> IMA January 8-10 2024

Income Tax Reforms as a Driver for Female Labor Supply? | Herrmann et al. | 1 © Fraunhofer Institute for Applied Information Technology FIT

Motivation

- Remaining gender gaps in labor supply are likely to be partially caused by the current joint taxation regime (Apps and Rees, 2004 and Bick and Fuchs-Schündeln, 2018)
 - Relevance of taxation regime for married women's labor supply (see, e.g. Selin, 2014, Fuenmayor et al., 2018)
- Reform of withholding taxation to reduce asymmetry
 - Only liquidity effects (see, e.g. Lembcke et al., 2021 or Bach et al., 2022)
 - Experimental evidence of behavioral responses to withholding taxation (see, e.g. Becker et al., 2019)

Our Approach and Results

- Investigation of planned withholding tax reform, that reduces asymmetry in taxation within couples
- Standard methodology in labor supply models ignores research on intra-couple bargaining
- Ex-ante analysis about how different assumptions on couples' decsionmaking influence labor supply reactions
- Different scenarios lead to different labor supply responses
- The most realistic scenario shows small, positive effects on total hours worked, however, small, adverse effects on labor force participation

Background - Taxation of Married Couples in Germany

- Progressive income taxation is levied in two steps: Withholding taxation and annual income taxation
- Married couples are taxed jointly, hence tax saving is largest for couples with large income differences
- For dependent income withholding taxation differentiates several treatments:
 - Symmetric taxation: default option, neutral (tax class IV)
 - Asymmetric taxation: primary earner favoring (tax class III) and secondary earner disadvantaging (tax class V)
 - **Reform**: Neutral, multiplication with a factor < 1

Tax Treatments - Withholding Taxation

Source: Own Calculations on the Basis of the German Tax Tariff in 2019.

Income Tax Reforms as a Driver for Female Labor Supply? | Herrmann et al. | 5 © Fraunhofer Institute for Applied Information Technology FIT

Taxation with Factor

Marginal tax rate depends on the share of own earned wage to sum of wages

Income Tax Reforms as a Driver for Female Labor Supply? | Herrmann et al. | 6

© Fraunhofer Institute for Applied Information Technology FIT

Methodology

- Discrete choice labor supply model, maximization of utility by choosing a labor supply from a discrete number of categories (see, e.g. Aaberge et al., 1995, van Soest, 1995 and Hoynes, 1996)
- Two major components:
 - Simulation of effects of tax-benefits reforms, holding the labor supply constant
 - Estimation of behavioral responses
- Utility V_{ij} for couple i when choosing category j is captured by a utility function specification U, contingent on disposable income Cij, female L^f_j and male L^m_j leisure and individual and household characteristics Z_i:

$$V_{ij} = U(C_{ij}, L_j^m, L_j^f, Z_i) + \epsilon_{ij}$$

(1)

Econometric Specification

 Differentiation between 3 categories for men and 6 categories for women (see, e.g. Steiner et al., 2012)

Distribution Working Hours

Standard Approach:

$$U(C_{ij}, L_j^f, L_j^m, Z_i, \epsilon_i j) = \beta_{ci} C_{ij} + \beta_{ci}^2 C_{ij}^2 + \dots$$
(2)

• Upper Bound: $x \in f, m$

$$U(C_{ij}^{\mathbf{x}}, L_{j}^{\mathbf{x}}, Z_{i}, \epsilon_{ij}) = \boxed{\beta_{ci}^{\mathbf{x}} C_{ij}^{\mathbf{x}}} + \beta_{ci}^{2,\mathbf{x}} C_{ij}^{2,\mathbf{x}} + \dots$$
(3)

Preference Estimation:

$$U(C_{ij}^{f}, C_{ij}^{m}, L_{j}^{f}, L_{j}^{m}, Z_{i}, \epsilon_{i}j) = \beta_{ci}^{f} C_{ij}^{f} + \beta_{ci}^{m} C_{ij}^{m} + \beta_{ci}^{2,f} C_{ij}^{2,f} + \dots$$
(4)

Income Tax Reforms as a Driver for Female Labor Supply? | Herrmann et al. | 8 © Fraunhofer Institute for Applied Information Technology FIT

- Large Representative Survey; German Socio-Economic Panel (SOEP), survey year 2019
- Restriction to married and cohabiting working-age individuals who are not retired - flexible in labor supply
 - 6,726 unweighted observations or 3,363 couples

Deskriptive Statistics

Preliminary Results

🕨 Results Male Spouse, Primary Earner Favoring 🚺 🕨 Subgroups Female Spouse, Secondary Earner Favoring

	Intensive Margin	Total	Extensive Margin	
	(in %)	(in %)	(in PP)	
	Cond. Hrs. Effect	Uncond. Hrs. Effect	Labor Force Participation	
Standard Approach				
Secondary Earner	0.15	-0.70	-0.71	
Upper Bound				
Secondary Earner	1.71	2.98	1.05	
Preference Estimation				
Secondary Earner	0.62	0.46	-0.13	
Notes: Effects are expressed in means of the subgroup.				

Conclusion

- Actual decsionmaking may not be captured well by the standard approach in microsimulation models
- Depending on the assumption about decisionmaking within couples, the total effect on hours worked reaches from small negative values to large positive ones

Bibliography I

- Aaberge, Rolf, John K. Dagsvik, and Steinar Strøm (1995) "Labor Supply Responses and Welfare Effects of Tax Reforms," The Scandinavian Journal of Economics, 97 (4), 635–659.
- Apps, Patricia and Ray Rees (2004) "Fertility, Taxation and Family Policy," Scandinavian Journal of Economics, 106 (4), 745–763.
- Bach, Stefan, Peter Haan, and Katharina Wrohlich (2022) "Abschaffung der Lohnsteuerklasse V sinnvoll, ersetzt aber keine Reform des Ehegattensplittings," DIW Wochenbericht, 10, 160–165.
- Becker, Johannes, Jonas Fooken, and Melanie Steinhoff (2019) "Behavioral effects of withholding taxes on labor supply," *The Scandinavian Journal of Economics*, 121 (4), 1417–1440.
- Bick, Alexander and Nicola Fuchs-Schündeln (2018) "Taxation and Labour Supply of Married Couples across Countries: A Macroeconomic Analysis," *Review of Economic Studies*, 85 (3), 1543–1576.

Bibliography II

- Fuenmayor, Amadeo, Rafael Granell, and Mauro Mediavilla (2018) "The effects of separate taxation on labor participation of married couples. An empirical analysis using propensity score," *Review of Economics of the Household*, 16, 541–561.
- Hoynes, Hilary Williamson (1996) "Welfare Transfers in Two-Parent Families: Labor Supply and Welfare Participation Under AFDC-UP," *Econometrica*, 64 (2), 295–332.
- Lembcke, Franziska K., Lukas Nöh, and Milena Schwarz (2021) "Anreizwirkungen des deutschen Steuer- und Transfersystems auf das Erwerbsangebot von Zweitverdienenden," working paper, Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung.
- Selin, Hakan (2014) "The rise in female employment and the role of tax incentives. An empirical analysis of the Swedish individual tax reform of 1971," *International Tax and Public Finance*, 21, 894–922.

Bibliography III

- van Soest, Arthur (1995) "Structural Models of Family Labor Supply: A Discrete Choice Approach," *The Journal of Human Resources*, 30 (1), 63–88.
- Steiner, Viktor, Katharina Wrohlich, Peter Haan, and Johannes Geyer (2012) "Documentation of the Tax-Benefit Microsimulation Model STSM: Version 2012," Data Documentation 63, DIW Berlin, German Institute for Economic Research.

Choice Probabilities

Probability that **couple** *i* chooses **alternative** *k* over all **other alternatives j** is given by:

$$P_{iK} = Pr\{max(V_{i1}, ..., V_{iJ}) \le V_{iK}\} = \frac{\exp U_{ik}}{\sum_{j=0}^{J} \exp U_{ij}}, \forall j = 0, ..., J \land k \in J$$
(5)

Income Tax Reforms as a Driver for Female Labor Supply? | Herrmann et al. | 15 © Fraunhofer Institute for Applied Information Technology FIT

Likelihood Function

The joint likelihood of observing *M* married couples respectively choosing category *k* indexed by *i* in the sample is:

$$L = \prod_{i=1}^{M} \frac{\exp U_{ik}}{\sum_{j=0}^{J} \exp U_{ij}}$$
(6)

Parameters in U(.) are estimated to maximize the likelihood stated in Equation 6, meaning that each couple compares the expected utility derived from each hours category.

Distribution Working Hours

▲ Back

Weekly Working Hours					
		Male			
Female	0	1-34	35-41	>41	Total
0	3.26	1.44	3.5	6.36	14.55
1 - 12	0.88	0.66	3.75	4.84	10.12
13 -20	0.26	0.49	4.44	5.25	10.44
21-34	0.82	1.24	10.9	14.57	27.53
35-41	1.15	1.63	8.05	9.28	20.12
>41	0.58	0.88	6.18	9.59	17.23
Total	6.95	6.34	36.83	49.89	100

Notes: Only married and cohabiting couples with flexible labor supplies. Relative frequencies in percent. Data: SOEP 2019.

Deskriptive Statistics

◀ Back

Selected Variables	Female	Male	
	Mean	Mean	Difference
Weekly Working Hours	26.48	40.26	-13.78 ***
	(0.37)	(0.26)	
Weekly Working Hours of Employed	30.99	43.15	-12.16***
	(0.32)	(0.21)	
Gross Hourly Wage	18.94	25.50	-6.56***
	(1.71)	(1.17)	
Gross Hourly Wage of Employed	22.25	27.38	-5.13**
	(2.05)	(1.37)	

Notes: Significance Level: * p<0.05, ** p<0.01, *** p<0.001; Standard errors in parentheses.

Results Male Spouse, Primary Earner Favoring

◀ Back

	Intensive Margin	Total	Extensive Margin	
	(in Percent)	(in Percent)	(in Percentage Points)	
	Cond. Hrs. Effect	Uncond. Hrs. Effect	Labor Force Participation	
	_			
	Sta	ndard Approach		
Primary Earner	-0.02	-0.39	-0.37	
Age below 50	-0.02	-0.42	-0.40	
Age above 50	-0.02	-0.34	-0.32	
Upper Bound				
	-0.02	-0.99	-0.96	
Age below 50	-0.02	-1.09	-1.07	
Age above 50	-0.03	-0.86	-0.83	
Preference Estimation				
	0.02	-0.16	-0.17	
Age below 50	0.01	-0.21	-0.22	
Age above 50	0.03	-0.09	-0.12	

© Fraunhofer Institute for Applied Information Technology FIT

Subgroups Female Spouse, Secondary Earner Favoring

◀ Back

Intensive Margin	Total	Extensive Margin			
(in Percent)	(in Percent)	(in Percentage Points)			
Cond. Hrs. Effect	Uncond. Hrs. Effect	Labor Force Participation			
Sta	ndard Approach				
0.15	-0.70	-0.71			
0.22	-0.63	-0.73			
-0.02	-0.83	-0.67			
Upper Bound					
1.71	2.98	1.05			
1.20	1.84	0.54			
2.68	5.21	2.02			
Preference Estimation					
0.62	0.46	-0.13			
0.42	0.05	-0.31			
0.99	1.26	0.22			
	Intensive Margin (in Percent) Cond. Hrs. Effect 0.15 0.22 -0.02 1.71 1.20 2.68 Prefe 0.62 0.42 0.99	Intensive Margin (in Percent) Total (in Percent) Cond. Hrs. Effect Uncond. Hrs. Effect Standard Approach 0.15 -0.70 0.22 -0.63 -0.22 -0.83 Upper Bound 1.71 2.98 1.20 1.84 2.68 5.21 Preference Estimation 0.62 0.46 0.42 0.05 0.99 1.26			

Fraunhofer