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Motivation 2 / 20

• Socioeconomic differences in health and healthcare use even in developed
countries

• Low-income groups have worse health (e.g. in life expectancy)
• Effective access may differ across groups

• 27% of patients with low level of education reported unmet needs for healthcare
(Eurostat, 2019)

• Large geographic variation in healthcare use across all types of systems
• Per capita utilization difference in the highest vs. lowest spending area is e.g. 84%

in the US and 53% in Hungary
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District-level healthcare spending in Hungary 3 / 20

Outpatient spending Inpatient spending Drug spending
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Sources of regional variation 4 / 20

• Main sources of variation
• Patient share (demand side)

• health status
• preferences

• Place share (supply side)
• capacities (number of physicians, equipment)
• physicians’ belief, practice style
• local climate and local economic conditions

• Decomposition: using moves across districts
• Policy implications

• High place share suggests inefficiencies in the supply of health care
• Heterogeneity: understanding the sources can help to target policies
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Related literature 5 / 20

• Sources of regional variation in healthcare utilization using mover identification
• Finkelstein et al. (2016), Moura et al. (2019), Salm and Wübker (2020), Godoy and

Huitfeldt (2020), Zeltzer et al. (2021), Johansson and Svensson (2022), Badinski et
al. (2023)

• Sources of socioeconomic differences in healthcare utilization
• Demand-side: Acton (1975), Lleras-Muney and Glied (2008), Allin and Hurley

(2009), Cutler and Lleras-Muney (2010)
• Supply-side: Brekke et al. (2018), Chen and Lakdawalla (2019), Martin et al.

(2020); Turner et al. (2022)
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Public healthcare system in Hungary 6 / 20

• Single-payer system with universal coverage, which is free at the point of use
(apart from pharmaceuticals).

• Primary care:
• Provided by law at place of residence or nearby

• Specialist outpatient care:
• Available in almost all district centres

• Inpatient care:
• Available in half of district centres, but county seats provide higher level of services

• Prescribed pharmaceuticals
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Administrative dataset 7 / 20

A random 50% sample of the 2003 population of Hungary for years 2009–2017 (ap-
prox. 5 million people)

Matched administrative dataset on healthcare and labour market variables

• Demography: Gender, age, occurence and time of death, district of residence
• 197 districts in Hungary (with approx. 50,000 population on average)

• Healthcare:
• Outpatient care (by specialties): number of visits & spending
• Inpatient care (by specialties): number of days & spending
• Prescribed pharmaceuticals (ATC categories): number of prescriptions and

spending

• Labour market: labour force status, earnings, pensions

7 / 20



Movers 8 / 20

• Definition: county of residence changed exactly once in 2010-2016
• Age at time of move: 30-79
• Excluding Budapest-agglomeration moves
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Model 9 / 20

E (yit) = exp
(
αi + γj(i ,t) + τt + xitλ

)
• yit : health care utilization of individual i in period t
• αi : individual i effect
• γj(i ,t): district j effect
• τt : time effect.

• We choose an exponential specification because of the nature of the variables
(count or spending data with many zeros).
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Estimation: difference-in-differences 10 / 20

• Identification depends on the presence of movers.
• t0i : time of move for individual i , o(i) the origin, d(i) the destination district
• Then the equation can be written into a difference-in-differences-type framework:

E (yit) = exp
(
α′i + τt + I{t≥t0i } × θ × ∆i + xitβ

)
• where ∆i = log yd(i) − log yo(i) is the log difference of average utilization of the

destination and origin district
• θ, the place share, is the parameter of interest.
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Estimation: event study 11 / 20

• Besides the above DiD-type analysis, we also estimate event study versions:

E (yit) = exp

(
α′i + τt +

k=4∑
k=−5

θk × I{k=t−t0i }
× ∆i + xitβ

)
.

• The models are estimated with fixed-effects Poisson regression.
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Event-study results: outpatient care 12 / 20

Outpatient Visits
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Outpatient Spending
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Place shares (θ) from DiD estimation 13 / 20

(1) (2) (3)
Outpatient care Inpatient care Pharmaceuticals

Frequency 0.659*** 0.0136 0.183***
(0.0316) (0.148) (0.0397)

Spending 0.659*** 0.252 0.305*
(0.0298) (0.191) (0.170)

Observations 266,290 128,271 257,731

Robust standard errors in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.

Note: Difference-in-differences estimates of place effects. Controls include calendar year fixed
effects and gender – age group interactions. For each utilization type, the first row shows a
measure of frequency and the second row shows spending. Frequency measures are outpatient
visits, inpatient days, and number of prescriptions.
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Heterogeneity of outpatient place share 14 / 20
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Possible mechanisms 15 / 20

• Place share is higher among low-ses people
• which is not driven by differences in health (no difference by health status).

• Supply-side constraints may include:
• Capacity constraints may affect some patients disproportionately
• Quality of physician-patient communication
• Unconscious bias and discrimination
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Determinants of healthcare use 16 / 20

• We study how district-level observables affect healthcare use.
• Part of the endogeneity can be removed by observing movers.

• We estimate fixed-effects Poisson regressions

E (yit) = exp
(
αi + zj(i ,t)η + xitλ

)
• where zj(i ,t) is a vector of observable district characteristics

• healthcare capacities (outpatient hours, hospital beds)
• geography (distance from county seat)
• socioeconomic conditions (average taxable income)
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Outpatient capacities and visits 17 / 20
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Capacities matter (estimates using movers) 18 / 20

Outpatient Outpatient Inpatient Inpatient
visits spending days spending

Outpatient hours, 0.079*** 0.102*** -0.059** -0.005
per 100 capita (0.006) (0.007) (0.029) (0.020)
Hospital beds, -0.047*** -0.097*** 0.129* 0.072
per 100 capita (0.016) (0.018) (0.073) (0.052)
County seat -0.172*** -0.226*** 0.121 -0.048

(0.025) (0.028) (0.115) (0.080)
Distance from -0.018*** -0.019*** 0.017 -0.016
county seat, 10 km (0.004) (0.005) (0.018) (0.013)
Log income -0.005 -0.027 0.169 -0.143
per capita (0.040) (0.048) (0.167) (0.141)
Robust standard errors. *** p < 0.01, ** p < 0.05, * p < 0.1.

• Movers react strongly to changes in outpatient capacities
• even stronger effects for women and low-ses patients

• Substitution between inpatient and outpatient care
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Conclusion 19 / 20

• Place effects account for 66% of the variation in outpatient spending, 31% in
drug spending, while do not play a role in inpatient spending.

• There is heterogeneity in outpatient place shares:
• 65-78% for low-income groups, and
• 23-55% for high-income groups.

• Positive association between district-level outpatient spending and capacities
• stronger for female and low-income groups.

• Effective access is not universal, and there are inefficiencies on the supply side.
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Thank you for your attention!
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