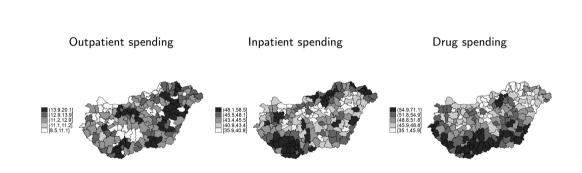
Geographic and Socioeconomic Variation in Healthcare: Evidence from Migration

¹HUN-REN Centre for Economic and Regional Studies ²Corvinus University of Budapest ³Vienna Graduate School of Economics ⁴World Bank

9th World Congress of the International Microsimulation Association, 2024, Vienna
10 January, 2024

- Socioeconomic differences in health and healthcare use even in developed countries
 - Low-income groups have worse health (e.g. in life expectancy)
 - Effective access may differ across groups
 - 27% of patients with low level of education reported unmet needs for healthcare (Eurostat, 2019)
- Large geographic variation in healthcare use across all types of systems
 - Per capita utilization difference in the highest vs. lowest spending area is e.g. 84% in the US and 53% in Hungary



- Main sources of variation
 - Patient share (demand side)
 - health status
 - preferences
 - Place share (supply side)
 - capacities (number of physicians, equipment)
 - physicians' belief, practice style
 - local climate and local economic conditions
- Decomposition: using moves across districts
- Policy implications
 - High place share suggests inefficiencies in the supply of health care
 - Heterogeneity: understanding the sources can help to target policies

- Sources of regional variation in healthcare utilization using mover identification
 - Finkelstein et al. (2016), Moura et al. (2019), Salm and Wübker (2020), Godoy and Huitfeldt (2020), Zeltzer et al. (2021), Johansson and Svensson (2022), Badinski et al. (2023)
- Sources of socioeconomic differences in healthcare utilization
 - Demand-side: Acton (1975), Lleras-Muney and Glied (2008), Allin and Hurley (2009), Cutler and Lleras-Muney (2010)
 - Supply-side: Brekke et al. (2018), Chen and Lakdawalla (2019), Martin et al. (2020); Turner et al. (2022)

- Single-payer system with universal coverage, which is free at the point of use (apart from pharmaceuticals).
- Primary care:
 - Provided by law at place of residence or nearby
- Specialist outpatient care:
 - Available in almost all district centres
- Inpatient care:
 - · Available in half of district centres, but county seats provide higher level of services
- Prescribed pharmaceuticals

A random 50% sample of the 2003 population of Hungary for years 2009–2017 (approx. 5 million people)

Matched administrative dataset on healthcare and labour market variables

- Demography: Gender, age, occurence and time of death, district of residence
 - 197 districts in Hungary (with approx. 50,000 population on average)
- Healthcare:
 - Outpatient care (by specialties): number of visits & spending
 - Inpatient care (by specialties): number of days & spending
 - **Prescribed pharmaceuticals** (ATC categories): number of prescriptions and spending
- Labour market: labour force status, earnings, pensions

- Definition: county of residence changed exactly once in 2010-2016
- Age at time of move: 30-79
- Excluding Budapest-agglomeration moves

$$E(y_{it}) = \exp(\alpha_i + \gamma_{j(i,t)} + \tau_t + x_{it}\lambda)$$

- y_{it} : health care utilization of individual i in period t
- α_i : individual i effect
- $\gamma_{j(i,t)}$: district j effect
- τ_t : time effect.
- We choose an exponential specification because of the nature of the variables (count or spending data with many zeros).

- Identification depends on the presence of movers.
- t_i^0 : time of move for individual *i*, o(i) the origin, d(i) the destination district
- Then the equation can be written into a difference-in-differences-type framework:

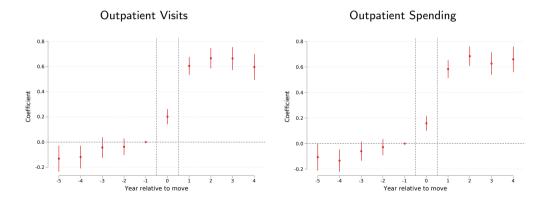
$$E(y_{it}) = \exp\left(\alpha'_i + \tau_t + \mathbb{I}_{\{t \ge t_i^0\}} \times \theta \times \Delta_i + x_{it}\beta\right)$$

- where $\Delta_i = \log \overline{y}_{d(i)} \log \overline{y}_{o(i)}$ is the log difference of average utilization of the destination and origin district
- θ , the place share, is the parameter of interest.

• Besides the above DiD-type analysis, we also estimate event study versions:

$$E(y_{it}) = \exp\left(\alpha'_i + \tau_t + \sum_{k=-5}^{k=4} \theta_k \times \mathbb{I}_{\{k=t-t_i^0\}} \times \Delta_i + x_{it}\beta\right).$$

• The models are estimated with fixed-effects Poisson regression.

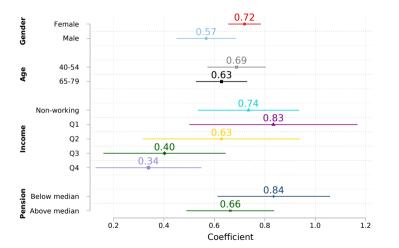


	(1) Outpatient care	(2) Inpatient care	(3) Pharmaceuticals			
Frequency	0.659***	0.0136	0.183***			
	(0.0316)	(0.148)	(0.0397)			
Spending	0.659***	0.252	0.305*			
	(0.0298)	(0.191)	(0.170)			
Observations	266,290	128,271	257,731			
Robust standard errors in parentheses.						

*** p < 0.01. ** p < 0.05, * p < 0.1.

Note: Difference-in-differences estimates of place effects. Controls include calendar year fixed effects and gender – age group interactions. For each utilization type, the first row shows a measure of frequency and the second row shows spending. Frequency measures are outpatient visits, inpatient days, and number of prescriptions.

Heterogeneity of outpatient place share



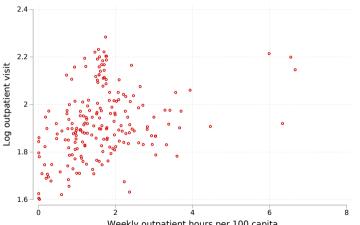
95% CIs of θ , estimated on subgroups

- Place share is higher among low-ses people
 - which is not driven by differences in health (no difference by health status).
- Supply-side constraints may include:
 - Capacity constraints may affect some patients disproportionately
 - Quality of physician-patient communication
 - Unconscious bias and discrimination

- We study how district-level observables affect healthcare use.
 - Part of the endogeneity can be removed by observing movers.
- We estimate fixed-effects Poisson regressions

$$E(y_{it}) = \exp(\alpha_i + z_{j(i,t)}\eta + x_{it}\lambda)$$

- where $z_{j(i,t)}$ is a vector of observable district characteristics
 - healthcare capacities (outpatient hours, hospital beds)
 - geography (distance from county seat)
 - socioeconomic conditions (average taxable income)



Weekly outpatient hours per 100 capita

	Outpatient visits	Outpatient spending	Inpatient days	Inpatient spending
Outpatient hours,	0.079***	0.102***	-0.059**	-0.005
per 100 capita	(0.006)	(0.007)	(0.029)	(0.020)
Hospital beds,	-0.047***	-0.097***	0.129*	0.072
per 100 capita	(0.016)	(0.018)	(0.073)	(0.052)
County seat	-0.172***	-0.226***	0.121	-0.048
	(0.025)	(0.028)	(0.115)	(0.080)
Distance from	-0.018***	-0.019***	0.017	-0.016
county seat, 10 km	(0.004)	(0.005)	(0.018)	(0.013)
Log income	-0.005	-0.027	0.169	-0.143
per capita	(0.040)	(0.048)	(0.167)	(0.141)

Robust standard errors. *** p < 0.01, ** p < 0.05, * p < 0.1.

- Movers react strongly to changes in outpatient capacities
 - even stronger effects for women and low-ses patients
- Substitution between inpatient and outpatient care

- Place effects account for 66% of the variation in outpatient spending, 31% in drug spending, while do not play a role in inpatient spending.
- There is **heterogeneity** in outpatient place shares:
 - 65-78% for low-income groups, and
 - 23-55% for high-income groups.
- Positive association between district-level outpatient spending and capacities
 - stronger for female and low-income groups.
- Effective access is not universal, and there are inefficiencies on the supply side.

Thank you for your attention!