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Introduction
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Local demographic schedules

▶ Local demographic schedules are in great demand for policy and
planning, research and commercial purposes

▶ Important input in regional population projections
▶ Microsimulation models, in particular, allows for more heterogeneity

and interactions between groups
▶ However, obtaining reliable estimates of such schedules is often not

straightforward
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Small area problem

▶ "... sample is not large enough to
support direct estimates of
adequate precision" (Rao and
Molina, 2015)

▶ Random variation in demographic
processes becomes prominent in
small samples, which makes direct
estimates noisy and unstable

Source: http://earthporm.com
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Small area problems in the Norwegian setting

▶ Relevant local administrative units are municipalities (N=356)
▶ Large variation in population size – Oslo 680K /Utsira <0.2K
▶ Most have low population size – median 4.6K

Example: Number of estimates (cells) needed:

Age Munici- Sexes Total number
range palities of cells

Mortality 0-100 365 2 73,730
Migration 0-69 365 2 51,100
Fertility 15-49 365 1 12,775
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Solutions, drawbacks and motivation

▶ Common approaches are aggregation over time and space, parametric
modeling and indirect model-based methods

▶ Pre-2020 regional projections for Norway relied heavily on
aggregation of data

▶ These approaches reduce geographic variation in estimates
▶ We needed a method that:

1. allows for local estimates
2. preserve regional variation
3. benefit from high-quality full-count population data
4. is data-driven and transparent
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Model and estimator
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Empirical Bayes (EB) methods

Empirical Bayes estimator checks these boxes
▶ Excellent prediction properties (variance-bias trade-off)
▶ Shrinkage estimator borrows support from larger domains

▶ Imprecise small area means → weighted towards larger domain mean
▶ Precise local estimates less affected
▶ If larger domain provides stat. support, cell sizes can be tiny (or zero)

▶ The standard is two-level models (Fay and Herriot, 1979)
▶ However, shrinking everything towards the population mean can wash

away regional differences
▶ Instead, we use a three-level hierarchical linear model
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Three-level hierarchical linear model

Yrji = θ + θr + θj + ϵrji (1)

ϵrji ∼ N(0, σ20),
θj ∼ N(0, σ21 ), (2)
θr ∼ N(0, σ22)

▶ Yrji: binary for woman i in municipality j and region r gives birth
▶ θ: the fixed effect, population average fertility rate
▶ θr: the random effect at the regional level
▶ θj the random effect at the municipality level
▶ ϵrji is the individual error
▶ σ20, σ21 , σ22 are the random variances to be estimated
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EB estimator

▶ The corresponding EB estimator, based on the three-level hierarchical
model, can be formulated as a weighted sum of empirical estimates of
the hierarchy means

θ̂EBj = wjȳj + wrȳr + wcȳ (3)

▶ ȳj, ȳr, ȳc, is the municipality (j), regional (r), and population (c) means
▶ Weights sum to one, depend on pop. size and random effect variance

estimates
▶ EB estimates bounded between 0 and 1
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EB estimator

With a three-level hierarchical linear model, attention can be directed
towards specifying a regional level to catch relevant heterogeneity

Regions can be based on:
▶ Administrative units (counties, hospital catchment areas)
▶ Official units (commuter zones, local labor markets, metropolitan

areas, economic regions)
▶ or any other aggregated areas (arbitrary or optimal)
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Simulation
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Simulation design

▶ We simulate ASFRs for 400 municipalities
▶ draw random population size and coordinates
▶ systematic geographical component (nonlinear and continuous)
▶ idiosyncratic local component (random)

▶ Agnostic region rule, subdivide municipalities into 64 equally sized
regions (8×8 grid)

▶ Calculate our preferred EB estimator, along with 4 alternatives
▶ We run the procedure 1,000 times and collect the corresponding Bias

and MSE
▶ Follow simulation design recommendations from Morris et al. (2019)
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Simulation results

Table: Simulation bias and MSE of the estimators

Linear models Non-linear Direct
model estimates

L3 L2C L2R NL3 DM
Bias (× 1000)
Mean 0.00086 0.00090 -0.0014 -0.69 -0.011
SE (0.45) (0.49) (0.44) (0.50) (0.63)
MCSE [0.014] [0.015] [0.014] [0.016] [0.020]

MSE (× 1000)
Mean 0.20 0.37 0.40 0.21 4.86
SE (0.061) (0.18) (0.061) (0.061) (0.77)
MCSE [0.0019] [0.0056] [0.0019] [0.0019] [0.024]
Models: 3-lvl linear (L3), 2-lvl linear (L2C), 2-lvl linear with region FE (L2R), 3-lvl logit (NL3), Fre-

quentist mean (DM). Bias and MSE are calculated for each repetition, over 400 municipalities and
31 age groups.



Simulation results - MSE heterogeneity
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Figure: MSE by simulated characteristics



Real world application
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Application with Norwegian data on fertility

▶ Context
▶ Falling fertility: 1.98 in 2009 to 1.53 in 2019
▶ The average age of giving birth has increased steadily
▶ Substantial geographic variation in fertility: In 2019, the maximum

difference in TFR across counties was 0.25
▶ EB method useful when ASFRs change rapidly, not relying on long

panels of data
▶ Population and fertility data from 2019, for women aged 15-45
▶ Official economic regions, corresponding to the EU NUTS-4 level, form

the basis for the intermediate regional level (N=89)
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Fertility rates for municipalities by sizes

0

.1

.2

.3

.4

Fe
rt

ili
ty

 ra
te

 (a
ge

 3
0)

100 1000 10000 100000
Population

Direct estimates  
EB estimates  

Note: Five municipalities with direct estimates higher than 0.4 are excluded. Three of these have fertility rates

equal to one. In 53 municipalities the direct fertility rate estimates are equal to zero.



Municipal distribution of local TFR
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Geographic variation of local TFR

TFR
(1.61,1.74]
(1.59,1.61]
(1.56,1.59]
[1.42,1.56]

TFR based on our preferred
EB estimator (L3)

▶ Fits well with the
experiences

▶ High fertility in western
Norway

▶ Low fertility in North and
central east

▶ ...except around large
cities



Conclusion
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Concluding remarks

▶ The three-level model estimates outperforms alternative models and
provides demographically plausible results

▶ An advantage is the preservation of regional heterogeneity, while still
limiting sampling variability

▶ The method presented is arguably transparent, flexible, and
computationally simple - making it suitable for established
production frameworks

▶ Future research:
▶ Introduce age group dependency
▶ Incorporate time trends with panel data
▶ Investigate data-driven approaches to the specification of the regions
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