Tax-benefit revealed social preferences in Croatia

Marko Ledić¹ Ivica Rubil¹ Ivica Urban²

¹Institute of Economics, Zagreb
²Institute of Public Finance, Zagreb

IMA 2023, Wien

Fully supported by the Croatian Science Foundation, grant number: IP-2019-04-9924.
Introduction

On-going debate on the optimal design of the tax-benefit system

Efficiency and fairness considerations (trade-off)

Started with Mirrlees' (1971) model

Saez (2002) optimal tax model

Both intensive and extensive labor supply margins

Optimal tax schedule for a given social preferences for redistribution

Possible to invert Saez (2002) model to retrieve tax-benefit implicit social welfare weights

Weights which make the actual tax-benefit system optimal

Represent the government’s attitude towards redistribution

The value of redistributing e_1 (uniformly) to households belonging to a certain income group
Introduction

- On-going debate on the optimal design of the tax-benefit system
Introduction

- On-going debate on the optimal design of the tax-benefit system
 - Efficiency and fairness considerations (trade-off)
Introduction

- On-going debate on the optimal design of the tax-benefit system
 - Efficiency and fairness considerations (trade-off)
 - Started with Mirrlees’ (1971) model
Introduction

- On-going debate on the optimal design of the tax-benefit system
 - Efficiency and fairness considerations (trade-off)
 - Started with Mirrlees’ (1971) model
- Saez (2002) optimal tax model
Introduction

- On-going debate on the optimal design of the tax-benefit system
 - Efficiency and fairness considerations (trade-off)
 - Started with Mirrlees’ (1971) model

- Saez (2002) optimal tax model
 - Both intensive and extensive labor supply margins
Introduction

- On-going debate on the optimal design of the tax-benefit system
 - Efficiency and fairness considerations (trade-off)
 - Started with Mirrlees’ (1971) model

- Saez (2002) optimal tax model
 - Both intensive and extensive labor supply margins
 - Optimal tax schedule for a given social preferences for redistribution
Introduction

- On-going debate on the optimal design of the tax-benefit system
 - Efficiency and fairness considerations (trade-off)
 - Started with Mirrlees’ (1971) model

- Saez (2002) optimal tax model
 - Both intensive and extensive labor supply margins
 - Optimal tax schedule for a given social preferences for redistribution

- Possible to invert Saez (2002) model to retrieve tax-benefit implicit social welfare weights
Introduction

- On-going debate on the optimal design of the tax-benefit system
 - Efficiency and fairness considerations (trade-off)
 - Started with Mirrlees’ (1971) model

- Saez (2002) optimal tax model
 - Both intensive and extensive labor supply margins
 - Optimal tax schedule for a given social preferences for redistribution

- Possible to invert Saez (2002) model to retrieve tax-benefit implicit social welfare weights
 - Weights which make the actual tax-benefit system optimal
Introduction

- On-going debate on the optimal design of the tax-benefit system
 - Efficiency and fairness considerations (trade-off)
 - Started with Mirrlees’ (1971) model

- Saez (2002) optimal tax model
 - Both intensive and extensive labor supply margins
 - Optimal tax schedule for a given social preferences for redistribution

- Possible to invert Saez (2002) model to retrieve tax-benefit implicit social welfare weights
 - Weights which make the actual tax-benefit system optimal
 - Represent the government’s attitude towards redistribution
On-going debate on the optimal design of the tax-benefit system
- Efficiency and fairness considerations (trade-off)
- Started with Mirrlees’ (1971) model

Saez (2002) optimal tax model
- Both intensive and extensive labor supply margins
- Optimal tax schedule for a given social preferences for redistribution

Possible to invert Saez (2002) model to retrieve tax-benefit implicit social welfare weights
- Weights which make the actual tax-benefit system optimal
- Represent the government’s attitude towards redistribution
- The value of redistributing €1 (uniformly) to households belonging to a certain income group
This Paper
Follow the inverse-optimal tax approach to derive the marginal social welfare weights of single-earner households in Croatia.
Follow the inverse-optimal tax approach to derive the marginal social welfare weights of single-earner households in Croatia

Use tax-benefit microsimulation models
This Paper

- Follow the inverse-optimal tax approach to derive the marginal social welfare weights of single-earner households in Croatia
 - Use tax-benefit microsimulation models
 - Use behavioral labor supply model (elasticities)
Follow the inverse-optimal tax approach to derive the marginal social welfare weights of single-earner households in Croatia

- Use tax-benefit microsimulation models
- Use behavioral labor supply model (elasticities)

Tax-benefit revealed social preferences across different settings:
This Paper

- Follow the inverse-optimal tax approach to derive the marginal social welfare weights of single-earner households in Croatia
 - Use tax-benefit microsimulation models
 - Use behavioral labor supply model (elasticities)

- Tax-benefit revealed social preferences across different settings:
 1. **Baseline scenario**
 Direct taxes: Elasticities and optimal tax model
This Paper

- Follow the inverse-optimal tax approach to derive the marginal social welfare weights of single-earner households in Croatia
 - Use tax-benefit microsimulation models
 - Use behavioral labor supply model (elasticities)

- Tax-benefit revealed social preferences across different settings:
 1. **Baseline scenario**
 Direct taxes: Elasticities and optimal tax model
 2. **Intermediate scenario**
 Direct taxes: Elasticities
 Direct and indirect taxes: Optimal tax model
This Paper

- Follow the inverse-optimal tax approach to derive the marginal social welfare weights of single-earner households in Croatia
 - Use tax-benefit microsimulation models
 - Use behavioral labor supply model (elasticities)

- Tax-benefit revealed social preferences across different settings:
 1. **Baseline scenario**
 Direct taxes: Elasticities and optimal tax model
 2. **Intermediate scenario**
 Direct taxes: Elasticities
 Direct and indirect taxes: Optimal tax model
 3. **Advanced scenario**
 Direct and indirect taxes: Elasticities and optimal tax model
Methodology
The Inverse-Optimal Tax Model of Saez (2002)

Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints.

Individual utility depends on disposable income (C) and leisure (L).

SP redistributes from high- to low-income households by setting a (marginal) tax rate.

Form

$I + 1$ discrete income groups (ranked by gross income (Y_i):

- I groups ($i = 1, \ldots, I$) of individuals who work
- Group of individuals who do not work ($i = 0$)

The formula for the optimal level of taxes:

$$T_i - T_{i-1} = \frac{\zeta_i}{\sum_{i=0}^{I} s_i \left[1 - g_j - \eta_j T_i - T_0 \right]}$$

T_i is the effective tax paid by group i.

ζ_i (η_i) is the intensive (extensive) elasticity of labor supply at i.

s_i is the share of group i in the population.

g_i is the marginal social welfare weight of group i.

$\frac{4}{12}$
Methodology
The Inverse-Optimal Tax Model of Saez (2002)

- Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints

\[T_i - T_{i-1} = \frac{1}{\sum s_i} \left[\frac{\eta_i s_i}{1 - g_j - \eta_j T_i - T_0} - C_i - C_{i-1} \right] \]
Methodology
The Inverse-Optimal Tax Model of Saez (2002)

- Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints
 - Individual utility depends on disposable income (C) and leisure (L)
Methodology

The Inverse-Optimal Tax Model of Saez (2002)

- Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints
 - Individual utility depends on disposable income (C) and leisure (L)
- SP redistributes from high- to low-income households by setting a (marginal) tax rate

\[
T_i - T_{i-1} = \frac{1}{\zeta_i} \frac{s_i}{\sum_i s_i \left[1 - g_i - \eta_i T_i - T_0 \right]} (1)
\]

- T_i is the effective tax paid by group i
- ζ_i (η_i) is the intensive (extensive) elasticity of labor supply at i
- s_i is the share of group i in the population
- g_i is the marginal social welfare weight of group i
Methodology
The Inverse-Optimal Tax Model of Saez (2002)

- Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints
 - Individual utility depends on disposable income (C) and leisure (L)
- SP redistributes from high- to low-income households by setting a (marginal) tax rate
- Form $I + 1$ discrete income groups (ranked by gross income (Y_i)):

\[
T_i - T_{i-1} = C_i - C_{i-1} = \frac{1}{\zeta_i} \sum_{J \geq i} s_j \left[1 - g_j - \eta_j (T_i - T_0) \right] \]

- T_i is the effective tax paid by group i
- ζ_i (η_i) is the intensive (extensive) elasticity of labor supply at i
- s_i is the share of group i in the population
- g_i is the marginal social welfare weight of group i
Methodology
The Inverse-Optimal Tax Model of Saez (2002)

- Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints
 - Individual utility depends on disposable income (C) and leisure (L)
- SP redistributes from high- to low-income households by setting a (marginal) tax rate
- Form $I+1$ discrete income groups (ranked by gross income (Y_i)):
 - I groups ($i = 1, \ldots, I$) of individuals who work

The formula for the optimal level of taxes:

$$T_i - T_{i-1} = \frac{C_i - C_{i-1}}{\sum_{j=i}^{I} s_j \left[1 - g_j - \eta_j (T_i - T_0)\right]}$$

- T_i is the effective tax paid by group i
- η_i is the intensive elasticity of labor supply at i
- s_i is the share of group i in the population
- g_i is the marginal social welfare weight of group i
Methodology

The Inverse-Optimal Tax Model of Saez (2002)

- Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints
 - Individual utility depends on disposable income (C) and leisure (L)
- SP redistributes from high- to low-income households by setting a (marginal) tax rate
- Form $I + 1$ discrete income groups (ranked by gross income (Y_i)):
 - I groups ($i = 1, \ldots, I$) of individuals who work
 - Group of individuals who do not work ($i = 0$)
Methodology
The Inverse-Optimal Tax Model of Saez (2002)

- Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints
 - Individual utility depends on disposable income (C) and leisure (L)
- SP redistributes from high- to low-income households by setting a (marginal) tax rate
- Form $I + 1$ discrete income groups (ranked by gross income (Y_i)):
 - I groups ($i = 1, \ldots, I$) of individuals who work
 - Group of individuals who do not work ($i = 0$)
- The formula for the optimal level of taxes:
 \[
 \frac{T_i - T_{i-1}}{C_i - C_{i-1}} = \frac{1}{\zeta_i s_i} \sum_{j=i}^{I} s_j [1 - g_j - \eta_j \frac{T_i - T_0}{C_i - C_0}]
 \] (1)
Methodology

The Inverse-Optimal Tax Model of Saez (2002)

- Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints
 - Individual utility depends on disposable income (C) and leisure (L)
- SP redistributes from high- to low-income households by setting a (marginal) tax rate
- Form $I + 1$ discrete income groups (ranked by gross income (Y_i)):
 - I groups ($i = 1, \ldots, I$) of individuals who work
 - Group of individuals who do not work ($i = 0$)
- The formula for the optimal level of taxes:

\[
\frac{T_i - T_{i-1}}{C_i - C_{i-1}} = \frac{1}{\zeta_i s_i} \sum_{j=i}^{I} s_j [1 - g_j - \eta_j \frac{T_i - T_0}{C_i - C_0}] \tag{1}
\]
 - T_i is the effective tax paid by group i
Methodology

The Inverse-Optimal Tax Model of Saez (2002)

- Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints
 - Individual utility depends on disposable income (C) and leisure (L)
- SP redistributes from high- to low-income households by setting a (marginal) tax rate
- Form $I + 1$ discrete income groups (ranked by gross income (Y_i)):
 - I groups ($i = 1, \ldots, I$) of individuals who work
 - Group of individuals who do not work ($i = 0$)
- The formula for the optimal level of taxes:
 \[
 \frac{T_i - T_{i-1}}{C_i - C_{i-1}} = \frac{1}{\zeta_i s_i} \sum_{j=i}^{I} s_j \left[1 - g_j - \eta_j \frac{T_i - T_0}{C_i - C_0} \right]
 \]
 - T_i is the effective tax paid by group i
 - ζ_i (η_i) is the intensive (extensive) elasticity of labor supply at i
Methodology

The Inverse-Optimal Tax Model of Saez (2002)

- Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints
 - Individual utility depends on disposable income (C) and leisure (L)
- SP redistributes from high- to low-income households by setting a (marginal) tax rate
- Form $I + 1$ discrete income groups (ranked by gross income (Y_i)):
 - I groups ($i = 1, \ldots, I$) of individuals who work
 - Group of individuals who do not work ($i = 0$)
- The formula for the optimal level of taxes:
 \[
 \frac{T_i - T_{i-1}}{C_i - C_{i-1}} = \frac{1}{\zeta_i s_i} \sum_{j=i}^{I} s_j \left[1 - g_j - \eta_j \frac{T_i - T_0}{C_i - C_0} \right]
 \]
 (1)
 - T_i is the effective tax paid by group i
 - ζ_i (η_i) is the intensive (extensive) elasticity of labor supply at i
 - s_i is the share of group i in the population
Methodology
The Inverse-Optimal Tax Model of Saez (2002)

- Social planner (SP) maximizes a social welfare function subject to the budget and efficiency (labor supply reactions) constraints
 - Individual utility depends on disposable income (C) and leisure (L)
- SP redistributes from high- to low-income households by setting a (marginal) tax rate
- Form $I + 1$ discrete income groups (ranked by gross income (Y_i)):
 - I groups ($i = 1, \ldots, I$) of individuals who work
 - Group of individuals who do not work ($i = 0$)
- The formula for the optimal level of taxes:
 \[
 \frac{T_i - T_{i-1}}{C_i - C_{i-1}} = \frac{1}{\zeta_i s_i} \sum_{j=i}^I s_j [1 - g_j - \eta_j \frac{T_i - T_0}{C_i - C_0}]
 \]
 \(1\)
 - T_i is the effective tax paid by group i
 - ζ_i (η_i) is the intensive (extensive) elasticity of labor supply at i
 - s_i is the share of group i in the population
 - g_i is the marginal social welfare weight of group i
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 ▶ Consider potential salary workers 22-60
 ▶ Derive an optimal tax schedule for single men and women

2. Partition the population of singles into $I-1 = 6$ groups
 ▶ Group 0 (non-workers) have zero gross income
 ▶ Groups 1-5 calculated as quintiles of positive gross income

3. Use EUROMOD to simulate PIT, SSC and benefits
 ▶ Require tax levels (T_i) in net/effective terms

4. Construct an indirect-tax microsimulation model
 ▶ Simulate VAT, excises and ad valorem taxes
 ▶ Use HBS 2017 to impute expenditures into HR-SILC-2018
 ▶ Parametric survey-to-survey imputation (De Agostini et al. (2017))
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 - Consider potential salary workers 22-60
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 - Consider potential salary workers 22-60
 - Derive an optimal tax schedule for single men and women
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 ▶ Consider potential salary workers 22-60
 ▶ Derive an optimal tax schedule for single men and women

2. Partition the population of singles into \(l - 1 = 6 \) groups
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 ▶ Consider potential salary workers 22-60
 ▶ Derive an optimal tax schedule for single men and women

2. Partition the population of singles into \(l - 1 = 6 \) groups
 ▶ Group 0 (non-workers) have zero gross income
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 - Consider potential salary workers 22-60
 - Derive an optimal tax schedule for single men and women

2. Partition the population of singles into \(l - 1 = 6 \) groups
 - Group 0 (non-workers) have zero gross income
 - Groups 1-5 calculated as quintiles of positive gross income
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 - Consider potential salary workers 22-60
 - Derive an optimal tax schedule for single men and women

2. Partition the population of singles into \(l - 1 = 6 \) groups
 - Group 0 (non-workers) have zero gross income
 - Groups 1-5 calculated as quintiles of positive gross income

3. Use EUROMOD to simulate PIT, SSC and benefits
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 ▶ Consider potential salary workers 22-60
 ▶ Derive an optimal tax schedule for single men and women

2. Partition the population of singles into $I - 1 = 6$ groups
 ▶ Group 0 (non-workers) have zero gross income
 ▶ Groups 1-5 calculated as quintiles of positive gross income

3. Use EUROMOD to simulate PIT, SSC and benefits
 ▶ Require tax levels (T_i) in net/effective terms
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 - Consider potential salary workers 22-60
 - Derive an optimal tax schedule for single men and women

2. Partition the population of singles into $I - 1 = 6$ groups
 - Group 0 (non-workers) have zero gross income
 - Groups 1-5 calculated as quintiles of positive gross income

3. Use EUROMOD to simulate PIT, SSC and benefits
 - Require tax levels (T_i) in net/effective terms

4. Construct an indirect-tax microsimulation model
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 - Consider potential salary workers 22-60
 - Derive an optimal tax schedule for single men and women

2. Partition the population of singles into \(l - 1 = 6 \) groups
 - Group 0 (non-workers) have zero gross income
 - Groups 1-5 calculated as quintiles of positive gross income

3. Use EUROMOD to simulate PIT, SSC and benefits
 - Require tax levels \((T_i) \) in net/effective terms

4. Construct an indirect-tax microsimulation model
 - Simulate VAT, excises and ad valorem taxes
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 - Consider potential salary workers 22-60
 - Derive an optimal tax schedule for single men and women

2. Partition the population of singles into \(I - 1 = 6 \) groups
 - Group 0 (non-workers) have zero gross income
 - Groups 1-5 calculated as quintiles of positive gross income

3. Use EUROMOD to simulate PIT, SSC and benefits
 - Require tax levels \((T_i)\) in net/effective terms

4. Construct an indirect-tax microsimulation model
 - Simulate VAT, excises and ad valorem taxes
 - Use HBS 2017 to impute expenditures into HR-SILC-2018
Empirical Implementation

1. Data: Croatian component of EU-SILC 2018
 ▶ Consider potential salary workers 22-60
 ▶ Derive an optimal tax schedule for single men and women

2. Partition the population of singles into $I - 1 = 6$ groups
 ▶ Group 0 (non-workers) have zero gross income
 ▶ Groups 1-5 calculated as quintiles of positive gross income

3. Use EUROMOD to simulate PIT, SSC and benefits
 ▶ Require tax levels (T_i) in net/effective terms

4. Construct an indirect-tax microsimulation model
 ▶ Simulate VAT, excises and ad valorem taxes
 ▶ Use HBS 2017 to impute expenditures into HR-SILC-2018
 ▶ Parametric survey-to-survey imputation (De Agostini et al. (2017))
Labor Supply Estimation

1. Labor Supply (LS) Model
 - Latent job discrete-choice model (Dagsvik(1994))
 - Individuals have preferences over jobs characterized as packages (working hours, wage rate and non-wage attributes)
 - Consider the individuals' opportunities (additional constraint)
 - LS model estimated using 6 working-hour-choices
 - Predict wages for non-workers (Heckman's (1979) model)

2. Labor Supply Elasticities
 - Numerically simulated by predicting LS
 - Translate j working hours into responses over groups i
1. Labor Supply (LS) Model

- Latent job discrete-choice model (Dagsvik(1994))
 - Individuals have preferences over jobs characterized as packages (working hours, wage rate and non-wage attributes)
 - Consider the individuals' opportunities (additional constraint)
 - LS model estimated using 6 working-hour-choices
 - Predict wages for non-workers (Heckman's (1979) model)

2. Labor Supply Elasticities

- Numerically simulated by predicting LS
- Translate \(j \) working hours into responses over groups \(i \)
Labor Supply Estimation

1. Labor Supply (LS) Model

 Latent job discrete-choice model (Dagsvik (1994))

 Individuals have preferences over jobs characterized as packages (working hours, wage rate and non-wage attributes)

 Consider the individuals' opportunities (additional constraint)

 LS model estimated using 6 working-hour-choices

 Predict wages for non-workers (Heckman's (1979) model)

2. Labor Supply Elasticities

 Numerically simulated by predicting LS

 Translate j working hours into responses over groups i
1. Labor Supply (LS) Model
 - Latent job discrete-choice model (Dagsvik(1994))
1. Labor Supply (LS) Model
 - Latent job discrete-choice model (Dagsvik(1994))
 - Individuals have preferences over jobs characterized as packages (working hours, wage rate and non-wage attributes)
Labor Supply Estimation

1. Labor Supply (LS) Model
 - Latent job discrete-choice model (Dagsvik(1994))
 - Individuals have preferences over jobs characterized as packages (working hours, wage rate and non-wage attributes)
 - Consider the individuals’ opportunities (additional constraint)
1. Labor Supply (LS) Model
 - Latent job discrete-choice model (Dagsvik(1994))
 - Individuals have preferences over jobs characterized as packages (working hours, wage rate and non-wage attributes)
 - Consider the individuals’ opportunities (additional constraint)
 - LS model estimated using 6 working-hour-choices
1. Labor Supply (LS) Model

- Latent job discrete-choice model (Dagsvik(1994))
- Individuals have preferences over jobs characterized as packages (working hours, wage rate and non-wage attributes)
- Consider the individuals’ opportunities (additional constraint)
- LS model estimated using 6 working-hour-choices
- Predict wages for non-workers (Heckman’s (1979) model)
1. Labor Supply (LS) Model

- Latent job discrete-choice model (Dagsvik(1994))
- Individuals have preferences over jobs characterized as packages (working hours, wage rate and non-wage attributes)
- Consider the individuals’ opportunities (additional constraint)
- LS model estimated using 6 working-hour-choices
- Predict wages for non-workers (Heckman’s (1979) model)

2. Labor Supply Elasticities
Labor Supply Estimation

1. Labor Supply (LS) Model
 - Latent job discrete-choice model (Dagsvik(1994))
 - Individuals have preferences over jobs characterized as packages (working hours, wage rate and non-wage attributes)
 - Consider the individuals’ opportunities (additional constraint)
 - LS model estimated using 6 working-hour-choices
 - Predict wages for non-workers (Heckman’s (1979) model)

2. Labor Supply Elasticities
1. Labor Supply (LS) Model
 - Latent job discrete-choice model (Dagsvik(1994))
 - Individuals have preferences over jobs characterized as packages (working hours, wage rate and non-wage attributes)
 - Consider the individuals’ opportunities (additional constraint)
 - LS model estimated using 6 working-hour-choices
 - Predict wages for non-workers (Heckman’s (1979) model)

2. Labor Supply Elasticities
 - Numerically simulated by predicting LS
1. Labor Supply (LS) Model
 - Latent job discrete-choice model (Dagsvik(1994))
 - Individuals have preferences over jobs characterized as packages (working hours, wage rate and non-wage attributes)
 - Consider the individuals’ opportunities (additional constraint)
 - LS model estimated using 6 working-hour-choices
 - Predict wages for non-workers (Heckman’s (1979) model)

2. Labor Supply Elasticities
 - Numerically simulated by predicting LS
 - Translate j working hours into responses over groups i
Intensive and Extensive Elasticities

\[\zeta_i = \frac{C_i - C_{i-1}}{s_i} \frac{\partial s_i}{\partial (C_i - C_{i-1})}; \quad \eta_i = \frac{C_i - C_0}{s_i} \frac{\partial s_i}{\partial (C_i - C_0)} \]
Effective Marginal and Participation Tax Rates

\[EMTR_i = \frac{T_i - T_{i-1}}{Y_i - Y_{i-1}} \; ; \; EPT_i = \frac{T_i - T_0}{Y_i - Y_0} \]
Marginal Social Welfare Weights

Marginal Social Welfare Weights Table

Gross and (Real) Disposable Incomes and Net Taxes Table
Marginal Social Welfare Weights

Marginal Social Welfare Weights Table

Relative Marginal Social Welfare Weights Graph

Gross and (Real) Disposable Incomes and Net Taxes Table
Marginal Social Welfare Weights: Sensitivity to Elasticities

Baseline Scenario: Males
- Estimated
- No extensive response
- Mean ext. and int. elasticities

Baseline Scenario: Females
- Estimated
- No extensive response
- Mean ext. and int. elasticities

Advanced Scenario: Males
- Estimated
- No extensive response
- Mean ext. and int. elasticities

Advanced Scenario: Females
- Estimated
- No extensive response
- Mean ext. and int. elasticities
Conclusion

Contrast marginal social welfare weights across different tax types
▶ Direct, indirect taxes, and their combination
▶ Results contingent on the LS-elasticities and effective tax rates
▶ The Croatian tax-benefit system (2017) is optimal only with a significantly higher welfare weight assigned to the workless poor compared to the working poor
▶ Holds in the setting of direct taxes
▶ Result re-enforced when both direct and indirect taxes are included
▶ Pareto improvements are feasible if the elasticities are overlooked
▶ The distribution of marginal social welfare weights flattens
Conclusion

- Contrast marginal social welfare weights across different tax types

- Results contingent on the LS-elasticities and effective tax rates

- The Croatian tax-benefit system (2017) is optimal only with a significantly higher welfare weight assigned to the workless poor compared to the working poor

- Holds in the setting of direct taxes

- Result re-enforced when both direct and indirect taxes are included

- Pareto improvements are feasible if the elasticities are overlooked

- The distribution of marginal social welfare weights flattens
Conclusion

▶ Contrast marginal social welfare weights across different tax types

▶ Direct, indirect taxes, and their combination

▶ The Croatian tax-benefit system (2017) is optimal only with a significantly higher welfare weight assigned to the workless poor compared to the working poor

▶ Holds in the setting of direct taxes

▶ Result re-enforced when both direct and indirect taxes are included

▶ Pareto improvements are feasible if the elasticities are overlooked

▶ The distribution of marginal social welfare weights flattens
Conclusion

- Contrast marginal social welfare weights across different tax types
 - Direct, indirect taxes, and their combination
 - Results contingent on the LS-elasticities and effective tax rates
Conclusion

▶ Contrast marginal social welfare weights across different tax types
 ▶ Direct, indirect taxes, and their combination
 ▶ Results contingent on the LS-elasticities and effective tax rates

▶ The Croatian tax-benefit system (2017) is optimal only with a significantly higher welfare weight assigned to the workless poor compared to the working poor
Conclusion

- Contrast marginal social welfare weights across different tax types
 - Direct, indirect taxes, and their combination
 - Results contingent on the LS-elasticities and effective tax rates

- The Croatian tax-benefit system (2017) is optimal only with a significantly higher welfare weight assigned to the workless poor compared to the working poor
 - Holds in the setting of direct taxes
Conclusion

- Contrast marginal social welfare weights across different tax types
 - Direct, indirect taxes, and their combination
 - Results contingent on the LS-elasticities and effective tax rates

- The Croatian tax-benefit system (2017) is optimal only with a significantly higher welfare weight assigned to the workless poor compared to the working poor
 - Holds in the setting of direct taxes
 - Result re-enforced when both direct and indirect taxes are included
Conclusion

- Contrast marginal social welfare weights across different tax types
 - Direct, indirect taxes, and their combination
 - Results contingent on the LS-elasticities and effective tax rates

- The Croatian tax-benefit system (2017) is optimal only with a significantly higher welfare weight assigned to the workless poor compared to the working poor
 - Holds in the setting of direct taxes
 - Result re-enforced when both direct and indirect taxes are included

- Pareto improvements are feasible if the elasticities are overlooked
Conclusion

- Contrast marginal social welfare weights across different tax types
 - Direct, indirect taxes, and their combination
 - Results contingent on the LS-elasticities and effective tax rates

- The Croatian tax-benefit system (2017) is optimal only with a significantly higher welfare weight assigned to the workless poor compared to the working poor
 - Holds in the setting of direct taxes
 - Result re-enforced when both direct and indirect taxes are included

- Pareto improvements are feasible if the elasticities are overlooked
 - The distribution of marginal social welfare weights flattens
Tax-Benefit System in 2017

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Rate/Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal Income Tax</td>
<td></td>
</tr>
<tr>
<td>Number of Tax Bands</td>
<td>2</td>
</tr>
<tr>
<td>Min/Max Tax Band Limits (Monthly Level)</td>
<td>17500/∞</td>
</tr>
<tr>
<td>Min/Max Tax Rate [%]</td>
<td>24/36</td>
</tr>
<tr>
<td>VAT</td>
<td></td>
</tr>
<tr>
<td>Standard Rate [%]</td>
<td>25</td>
</tr>
<tr>
<td>Reduced Rates [%]</td>
<td>0, 5, 13</td>
</tr>
<tr>
<td>Employer SSC (General and Occupational Health and Employment Contributions)</td>
<td></td>
</tr>
<tr>
<td>Floor (Monthly Level)</td>
<td>2940.82</td>
</tr>
<tr>
<td>Rate [%]</td>
<td>17.2</td>
</tr>
<tr>
<td>Ceiling</td>
<td>No</td>
</tr>
<tr>
<td>Taxable by PIT</td>
<td>No</td>
</tr>
<tr>
<td>Employee SSC (Pension Insurance Contributions)</td>
<td></td>
</tr>
<tr>
<td>Floor (Monthly Level)</td>
<td>2940.82</td>
</tr>
<tr>
<td>Rate [%]</td>
<td>20</td>
</tr>
<tr>
<td>Ceiling</td>
<td>46434</td>
</tr>
<tr>
<td>Taxable by PIT</td>
<td>No</td>
</tr>
<tr>
<td>Social Assistance</td>
<td></td>
</tr>
<tr>
<td>Maximum Amount (Monthly Level)</td>
<td>800</td>
</tr>
<tr>
<td>Withdrawal Rate [%]</td>
<td>100</td>
</tr>
<tr>
<td>Taxable</td>
<td>PIT: No, SSC: No</td>
</tr>
<tr>
<td>Unemployment Benefits*</td>
<td></td>
</tr>
<tr>
<td>Payment Rate</td>
<td>60% of Gross Income</td>
</tr>
<tr>
<td>Duration</td>
<td>3 - 15 Months</td>
</tr>
<tr>
<td>Ceiling</td>
<td>70% of Average Net Wage (3979.5)</td>
</tr>
<tr>
<td>Taxable</td>
<td>IT: No; SSC: No</td>
</tr>
</tbody>
</table>

Notes: *Shown for the initial phase of unemployment for persons aged 30+ years. All monetary amounts are in HRK
Intensive and Extensive Elasticities

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th></th>
<th>Women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Advanced</td>
<td>Baseline</td>
<td>Advanced</td>
</tr>
<tr>
<td>Intensive Margin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.37</td>
<td>0.13</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>0.27</td>
<td>0.30</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>0.23</td>
<td>0.49</td>
<td>0.11</td>
<td>0.29</td>
</tr>
<tr>
<td>4</td>
<td>0.07</td>
<td>0.08</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>0.02</td>
<td>0.25</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>Extensive Margin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.37</td>
<td>0.13</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>0.16</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes: Income groups are defined by quintiles of the income distribution of single men and women. Group 0 denotes those with zero income (non-participants). Elasticities are obtained by simulating an increase of 1% of the difference in mean disposable/consumable incomes between a given income group \(i\) and the adjacent lower income group \(i - 1\) (intensive margin) or the group 0 of non-workers (extensive margin).
Effective Marginal Tax Rate (EMTR) and Participation Tax Rate (EPTR)

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th></th>
<th>Women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Advanced</td>
<td>Baseline</td>
<td>Advanced</td>
</tr>
<tr>
<td>EMTR (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>54</td>
<td>65</td>
<td>52</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>46</td>
<td>56</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>42</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>52</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>46</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>EPTR (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>54</td>
<td>65</td>
<td>52</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>12</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Notes: Income groups are defined by quintiles of the income distribution of single men and women. Group 0 denotes those with zero income (non-participants). EMTRs are calculated as \(\frac{T_i - T_{i-1}}{Y_i - Y_{i-1}} \) while EPTRs are calculated as \(\frac{T_i - T_0}{Y_i - Y_0} \) for all income groups \(i > 0 \).
Marginal Social Welfare Weights

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Intermediate</td>
</tr>
<tr>
<td>0</td>
<td>1.53</td>
<td>1.83</td>
</tr>
<tr>
<td>1</td>
<td>0.55</td>
<td>0.32</td>
</tr>
<tr>
<td>2</td>
<td>0.91</td>
<td>0.80</td>
</tr>
<tr>
<td>3</td>
<td>0.92</td>
<td>0.91</td>
</tr>
<tr>
<td>4</td>
<td>0.97</td>
<td>0.94</td>
</tr>
<tr>
<td>5</td>
<td>0.98</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Notes: Income groups are defined by quintiles of the income distribution of single men and women. Group 0 denotes those with zero income (non-participants). In the baseline scenario, we estimated the behavioral labor supply reactions (elasticities) on the disposable income (income net of direct taxes) while the inverse-optimal tax model uses the (net) tax function consisting of direct taxes. In the advanced scenario, we estimated the behavioral labor supply reactions (elasticities) on the real disposable income (income net of direct and indirect taxes) while the inverse-optimal tax model uses the (net) tax function consisting of direct and indirect taxes. In the intermediate scenario, we estimated the behavioral labor supply reactions (elasticities) on the disposable income (income net of direct taxes) while the inverse-optimal tax model uses the (net) tax function consisting of direct and indirect taxes.
Gross Income, (Real) Disposable Income and Net Taxes

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Advanced/ Baseline</th>
<th>Intermediate</th>
<th>Women</th>
<th>Advanced/ Baseline</th>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Advanced/ Intermediate</td>
<td>Baseline</td>
<td>Advanced/ Intermediate</td>
<td>Baseline</td>
<td>Advanced/ Intermediate</td>
</tr>
<tr>
<td>Gross Income (Y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>36296</td>
<td>36296</td>
<td>38034</td>
<td>38220</td>
<td>57436</td>
<td>57436</td>
</tr>
<tr>
<td>2</td>
<td>57436</td>
<td>57436</td>
<td>57386</td>
<td>58024</td>
<td>79136</td>
<td>79520</td>
</tr>
<tr>
<td>3</td>
<td>81314</td>
<td>81314</td>
<td>79136</td>
<td>79520</td>
<td>148081</td>
<td>149342</td>
</tr>
<tr>
<td>4</td>
<td>112189</td>
<td>112189</td>
<td>105310</td>
<td>105647</td>
<td>27067</td>
<td>27067</td>
</tr>
<tr>
<td>5</td>
<td>158377</td>
<td>158377</td>
<td>148081</td>
<td>149342</td>
<td>61430</td>
<td>61990</td>
</tr>
<tr>
<td>(Real) Disposable Income (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>15528</td>
<td>10504</td>
<td>19482</td>
<td>13892</td>
<td>12941</td>
<td>12941</td>
</tr>
<tr>
<td>1</td>
<td>32299</td>
<td>23355</td>
<td>37855</td>
<td>27067</td>
<td>48827</td>
<td>47902</td>
</tr>
<tr>
<td>2</td>
<td>46429</td>
<td>34868</td>
<td>46300</td>
<td>34782</td>
<td>63774</td>
<td>61990</td>
</tr>
<tr>
<td>3</td>
<td>61397</td>
<td>48827</td>
<td>61430</td>
<td>47902</td>
<td>99438</td>
<td>85400</td>
</tr>
<tr>
<td>4</td>
<td>79262</td>
<td>63774</td>
<td>75464</td>
<td>61990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>104708</td>
<td>88511</td>
<td>99438</td>
<td>85400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Taxes (T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-15528</td>
<td>-10504</td>
<td>-19482</td>
<td>-13892</td>
<td>-12941</td>
<td>-12941</td>
</tr>
<tr>
<td>1</td>
<td>3997</td>
<td>12941</td>
<td>180</td>
<td>11153</td>
<td>11086</td>
<td>23243</td>
</tr>
<tr>
<td>2</td>
<td>11007</td>
<td>22568</td>
<td>11086</td>
<td>23243</td>
<td>48415</td>
<td>43657</td>
</tr>
<tr>
<td>3</td>
<td>19917</td>
<td>32488</td>
<td>17705</td>
<td>31618</td>
<td>29846</td>
<td>63941</td>
</tr>
<tr>
<td>4</td>
<td>32927</td>
<td>48415</td>
<td>29846</td>
<td>43657</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>53669</td>
<td>69867</td>
<td>48642</td>
<td>63941</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Income groups are defined by quintiles of the income distribution of single men and women. Group 0 denotes those with zero income (non-participants). Gross and disposable incomes, net taxes and population shares represent the averages computed at the group level. Incomes and taxes are expressed annually in HRK.
Relative Marginal Social Welfare Weights

Marginal Social Welfare Weights Graph