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Forecasting Mortality Rates with Neural Networks

Deep learning - hidden insight into data?
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Forecasting the impact of state pension reforms in post-Brexit England and Wales using
microsimulation and deep learning (AECS & IMA2018 Narita, Japan)

Microsimulations of demographic changes in England and Wales under different EU referendum
scenarios (IMA 6th World Congress, Moncalieri, Italia 2017)



Microsimulations: pre-defined well-understood relationships

between individual attributes and overall population characteristics

- smoking, diet, exercise = incidence/prevalence of diseases

- energy usage, recycling habits = carbon emissions, waste generation

- fertility rate, women in childbearing age = population growth and age structure

Sometimes these relationships are very complicated, context-
dependent, contain subtle interactions and dependencies between
factors, as well as feedback loops and adversarial effects, which may
not be easily captured by traditional analytical approaches or
domain-specific knowledge.

Dangers of oversimplifications:

- introducing prohibition to mitigate social problems = organized crime,
bootlegging, lost tax revenue

- promotion of biofuels to reduce greenhouse effect = deforestation, increased
food prices, or even higher emissions due to land-use changes and intensive
farming

- pro-natalist policies in Europe: financial incentives, maternal leave extensions,
childcare support = short-lived and feeble results due to economic uncertainty,
youth unemployment, house prices



Microsimulations: pre-defined well-understood relationships between
individual attributes and overall population characteristics

Sometimes these relationships are very complicated, context-
dependent, contain subtle interactions and dependencies between
factors, as well as feedback loops and adversarial effects, which may
not be easily captured by traditional analytical approaches or domain-
specific knowledge.

Neural Networks: dynamically learning the relationships from data

layered structure enables to learn hierarchical
representations capable of modelling the
nonlinear and high-dimensional relationships
capacity to integrate vast amounts of
unstructured information (ambiguous, noisy,
incomplete) to find emerging patterns

iteratively adjusting interconnections within their
architecture in response to the data's subtleties
and new information (adaptivity)

generalizing the learnt patterns to external data




Modelling Age-Specific Fertility Rates with Neural Networks

Gender pay gap

Women in tertiary education
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Modelling Age-Specific Fertility Rates with Neural Networks
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Model: LSTM (Long-Short Term Memory) deep network

Features:

* Age

e Birth year

« Gender pay gap

« Employment rate (men & women)

* Immigration and Emigration

 House Price Index (inflation adj.)

 Tertiary education enrollment

 Child benefits: 15t ch couple, 1ch single, extra ch
(ratio to household income less housing cost)

Target: Age-specific fertility rate

Sources: ONS, BoE, IFS, inflation.eu, CEIC, cosmopolitan.com
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Fertility rate by Calendar Year and Age
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Modelling Age-Specific Fertility Rates with Neural Networks

Fertility Rate by Birth Cohort and Age
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Can neural networks, adept at capturing intricate trends and
patterns, be used to discern and understand such complexities?

Explainability and interpretability of NN models



Explainability and interpretability of NN models

NNs (especially Deep Learning models) increasingly used in critical applications, like
healthcare, finance or autonomous vehicles.

The need to understand how they make decisions and explain it in human terms has
become crucial for validating results, ensuring fairness, transparency and users’
trust, as well as fulfilling legal obligations (GDPR's right to explanation).

SHAP (SHapley Additive exPlanations): based on a simple game theoretical concept, it
assigns each feature an importance value for a particular prediction/sample (as
compared to an average prediction). Provides insights into how each feature
contributes to the model's decision.

Layer Activation Visualization and Feature Attribution: simple methods for
understanding how neural networks process inputs. Show on which part of data the
model is focused.

Attention Mechanisms: To which parts of the input the model pays attention.

LIME (Local Interpretable Model-agnostic Explanations): approximates the model
locally with an interpretable one and explains individual predictions.

Counterfactual Explanations: How the input would need to change to obtain a different
prediction. Testing hypothetical scenarios.

Model-Agnostic Methods (Partial Dependence Plots / PDP, Individual Conditional
Expectation / ICE): How changes in feature values impact the predictions, regardless
of the model used.




SHAP (SHapley Additive exPlanations)
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SHAP (SHapley Additive exPlanations)
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SHAP analysis of fertility rates

Age
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SHAP Summary Plot
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SHAP analysis of fertility rates

SHAP Summary,Plot High
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Context-dependence:

negative/positive pay gap: the lower/higher pay gap - the lower/higher fertility
negative/positive w. employment: the lower/higher - the lower/higher fertility
negative/positive child benefits: the lower/higher - the lower/higher fertility
negative/positive education: the higher/lower education - the lower/higher fertility
negative/positive house prices: the higher/lower HPI - the lower/higher fertility

Correlation, not causation!




SHAP analysis of fertility rates
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The impact of policy change in demographic segments

SHAP Summary Plot for Age 35-39
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SHAP Summary Plot

Age ".“ L] - = LA ‘ L] L L L L L] :.é L] :.... L L
Birth Year o« Wi o sme o @
Pay Gap o8 o

Employed Women
1st _child_couple
Immigration
Tertiary Education
1 child_single

HPI

extra_child
Contraception
Emigration
Employed Men

High SHAP value indicates
that changing the feature
would have a notable
iImpact on the output.
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SHAP measures the impact of each feature in isolation.

What about their interactions?




Attention Mechanism: contextual importance of features in combination

Feature

Attention Weights for Group [ 15. 1970.]
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Attention Weights for Group [ 17. 1994.]
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Attention Weights for Group [ 40. 1946.]
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Attention Weights for Group [ 39. 1956.]
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Attention Weights for Group [ 28. 1992.]
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Saliency maps (sensitivity)

Saliency Heatmap
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Rising house prices had significant impact
on the model’s predictions.

Did they influence fertility decisions
(directly or as a part of broader economic
conditions)?
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Summary

* Investigated the influence of socio-economic factors on age-specific
fertility rates in England & Wales using Machine Learning techniques:

« SHAP - quantified the contribution of each feature to the fertility
model's predictions

 Saliency Maps - visualized the importance of features like house price
index in the model’s decision-making process

e Attention Mechanism: shown on which features the model focused when
making predictions; indicates their strong interplay

* The model indicates that fertility decisions are multifaceted and
influenced by a complex interplay of socio-economic factors.

 The analysis suggests that changes in child benefits, relative to
household income a.h.c., significantly impact fertility trends.
Furthermore, it demonstrates a direct correlation between house
prices and fertility rates.

* The use of ML interpretability & explainability methods can provide a
deeper understanding of the model's predictions, which may support
research and policy formulation.




Prediction interval for a NN model

Introducing a bias to the loss function to estimate the lower and upper bounds of the Pl
~ intuitive, simple and efficient approach.
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Prediction interval for neural network models using weighted asymmetric loss functions. M. Grillo, Y. Han, AW (2023)



